Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x + 30 x^{2} - 116 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.248278302341$, $\pm0.610268142671$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.23552.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $78$ |
| Isomorphism classes: | 162 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $752$ | $745984$ | $593545328$ | $501217697792$ | $421025584114672$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $26$ | $886$ | $24338$ | $708654$ | $20526666$ | $594801190$ | $17249525186$ | $500246318430$ | $14507140515194$ | $420707192176086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=x^6+21 x^5+28 x^4+21 x^3+25 x^2+6 x+3$
- $y^2=26 x^6+3 x^5+3 x^4+3 x^3+15 x^2+11 x+9$
- $y^2=3 x^6+19 x^5+28 x^4+12 x^3+17 x^2+27 x+26$
- $y^2=9 x^6+21 x^5+8 x^4+28 x^2+27 x+26$
- $y^2=17 x^6+x^5+5 x^4+8 x^3+2 x^2+6 x+20$
- $y^2=5 x^6+11 x^5+14 x^4+12 x^3+15 x^2+5 x+23$
- $y^2=18 x^6+8 x^5+20 x^4+12 x^3+2 x^2+13 x+14$
- $y^2=14 x^6+19 x^4+17 x^3+24 x^2+17 x+2$
- $y^2=15 x^6+18 x^5+17 x^4+10 x^3+6 x^2+23 x+17$
- $y^2=9 x^6+19 x^5+4 x^4+4 x^2+26 x+16$
- $y^2=13 x^6+13 x^5+4 x^4+19 x^3+24 x^2+19 x+24$
- $y^2=19 x^6+23 x^5+27 x^4+22 x^3+8 x^2+12 x+21$
- $y^2=18 x^6+13 x^5+16 x^4+5 x^3+3 x^2+28 x+22$
- $y^2=20 x^6+25 x^5+8 x^4+4 x^3+23 x^2+19 x$
- $y^2=24 x^6+8 x^5+2 x^4+18 x^3+15 x^2+21 x+16$
- $y^2=16 x^6+8 x^5+10 x^4+7 x^3+x^2+3 x+1$
- $y^2=20 x^6+25 x^5+14 x^3+17 x^2+7 x+2$
- $y^2=8 x^6+16 x^5+19 x^4+5 x^3+13 x^2+3 x+4$
- $y^2=18 x^6+13 x^5+2 x^4+20 x^3+15 x^2+18 x+15$
- $y^2=2 x^6+13 x^5+22 x^4+13 x^3+9 x^2+23 x+23$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is 4.0.23552.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.e_be | $2$ | (not in LMFDB) |