| L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 4·6-s + 2·7-s + 4·8-s − 9-s + 4·11-s + 6·12-s + 2·13-s + 4·14-s + 5·16-s + 2·17-s − 2·18-s − 4·19-s + 4·21-s + 8·22-s + 4·23-s + 8·24-s + 4·26-s − 6·27-s + 6·28-s − 8·29-s + 6·31-s + 6·32-s + 8·33-s + 4·34-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.63·6-s + 0.755·7-s + 1.41·8-s − 1/3·9-s + 1.20·11-s + 1.73·12-s + 0.554·13-s + 1.06·14-s + 5/4·16-s + 0.485·17-s − 0.471·18-s − 0.917·19-s + 0.872·21-s + 1.70·22-s + 0.834·23-s + 1.63·24-s + 0.784·26-s − 1.15·27-s + 1.13·28-s − 1.48·29-s + 1.07·31-s + 1.06·32-s + 1.39·33-s + 0.685·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 722500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(8.973810543\) |
| \(L(\frac12)\) |
\(\approx\) |
\(8.973810543\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47069240927478387799763706944, −10.10640869941663411220091984026, −9.242612486354718357815062439777, −9.198514486617210582380378707185, −8.589187480512094337243592665666, −8.381270529486954983813656138567, −7.71457603136798102201009236412, −7.49363843435543192554939825479, −6.91343629717678556288113848850, −6.36060518200143086884817831643, −5.93135716561353587294568348125, −5.66184430493732938704079295842, −4.88580149021702740355794221316, −4.54314208037134971567913950026, −3.84239934552070872722459037907, −3.72195653013863120453022588324, −2.94480137474653486855259468425, −2.61350944777162393375297656071, −1.85257139337024660809808365529, −1.25640618338636972041896897550,
1.25640618338636972041896897550, 1.85257139337024660809808365529, 2.61350944777162393375297656071, 2.94480137474653486855259468425, 3.72195653013863120453022588324, 3.84239934552070872722459037907, 4.54314208037134971567913950026, 4.88580149021702740355794221316, 5.66184430493732938704079295842, 5.93135716561353587294568348125, 6.36060518200143086884817831643, 6.91343629717678556288113848850, 7.49363843435543192554939825479, 7.71457603136798102201009236412, 8.381270529486954983813656138567, 8.589187480512094337243592665666, 9.198514486617210582380378707185, 9.242612486354718357815062439777, 10.10640869941663411220091984026, 10.47069240927478387799763706944