Invariants
| Base field: | $\F_{61}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 4 x + 94 x^{2} - 244 x^{3} + 3721 x^{4}$ | 
| Frobenius angles: | $\pm0.336931087750$, $\pm0.575216314147$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.171008.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $234$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3568$ | $14500352$ | $51595595632$ | $191694421434368$ | $713361421811435248$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $3894$ | $227314$ | $13844910$ | $844618218$ | $51519990630$ | $3142737778210$ | $191707337652318$ | $11694146491708570$ | $713342911134567574$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=30 x^6+50 x^5+24 x^4+12 x^3+48 x^2+4 x+35$
- $y^2=9 x^6+52 x^5+4 x^4+8 x^3+8 x^2+27 x+16$
- $y^2=26 x^6+25 x^5+5 x^4+16 x^3+26 x^2+17 x+6$
- $y^2=33 x^6+34 x^5+3 x^4+38 x^3+22 x^2+3 x+39$
- $y^2=37 x^6+30 x^5+50 x^4+33 x^3+36 x^2+19 x+36$
- $y^2=7 x^6+11 x^5+22 x^4+60 x^3+9 x^2+5 x+48$
- $y^2=41 x^6+12 x^5+11 x^4+19 x^3+24 x^2+56 x+44$
- $y^2=50 x^6+31 x^5+37 x^4+51 x^3+52 x^2+57 x+51$
- $y^2=x^6+16 x^5+17 x^4+9 x^3+22 x^2+43 x+4$
- $y^2=47 x^6+58 x^5+43 x^4+37 x^3+3 x^2+42 x+50$
- $y^2=24 x^6+32 x^5+12 x^4+54 x^3+41 x^2+43 x+6$
- $y^2=9 x^6+57 x^5+56 x^4+x^3+9 x^2+50 x+40$
- $y^2=21 x^6+4 x^5+4 x^4+41 x^3+23 x^2+19 x+30$
- $y^2=41 x^6+53 x^5+39 x^4+16 x^2+9 x+24$
- $y^2=46 x^5+16 x^4+38 x^3+46 x^2+37 x+17$
- $y^2=24 x^6+58 x^5+41 x^4+4 x^3+22 x^2+39 x+46$
- $y^2=29 x^6+59 x^5+60 x^4+6 x^3+50 x^2+41 x+34$
- $y^2=9 x^6+48 x^5+22 x^4+22 x^3+34 x^2+59 x+60$
- $y^2=44 x^6+40 x^5+24 x^4+22 x^3+9 x^2+40 x+43$
- $y^2=29 x^6+13 x^5+55 x^4+43 x^3+57 x^2+11 x+56$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.171008.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.61.e_dq | $2$ | (not in LMFDB) | 
