Properties

Label 2-8400-1.1-c1-0-71
Degree $2$
Conductor $8400$
Sign $-1$
Analytic cond. $67.0743$
Root an. cond. $8.18989$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 3·11-s − 4·13-s − 6·17-s + 4·19-s + 21-s − 3·23-s − 27-s + 3·29-s + 10·31-s − 3·33-s − 7·37-s + 4·39-s + 43-s + 12·47-s + 49-s + 6·51-s + 6·53-s − 4·57-s − 12·59-s − 4·61-s − 63-s + 7·67-s + 3·69-s − 9·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.904·11-s − 1.10·13-s − 1.45·17-s + 0.917·19-s + 0.218·21-s − 0.625·23-s − 0.192·27-s + 0.557·29-s + 1.79·31-s − 0.522·33-s − 1.15·37-s + 0.640·39-s + 0.152·43-s + 1.75·47-s + 1/7·49-s + 0.840·51-s + 0.824·53-s − 0.529·57-s − 1.56·59-s − 0.512·61-s − 0.125·63-s + 0.855·67-s + 0.361·69-s − 1.06·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8400\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(67.0743\)
Root analytic conductor: \(8.18989\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23915256388055099462194300876, −6.75297664078658204068174382797, −6.16905741700059173386850236262, −5.39120123478087251324152617762, −4.55895716039817160799900570664, −4.12276261195502704367245350558, −3.02063187788417866022173453576, −2.23292901772985955406122408998, −1.12143930669857060958743154696, 0, 1.12143930669857060958743154696, 2.23292901772985955406122408998, 3.02063187788417866022173453576, 4.12276261195502704367245350558, 4.55895716039817160799900570664, 5.39120123478087251324152617762, 6.16905741700059173386850236262, 6.75297664078658204068174382797, 7.23915256388055099462194300876

Graph of the $Z$-function along the critical line