Properties

Label 2-702-1.1-c1-0-13
Degree $2$
Conductor $702$
Sign $-1$
Analytic cond. $5.60549$
Root an. cond. $2.36759$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s + 7-s + 8-s − 4·10-s − 5·11-s − 13-s + 14-s + 16-s − 6·17-s − 6·19-s − 4·20-s − 5·22-s + 5·23-s + 11·25-s − 26-s + 28-s + 5·29-s − 5·31-s + 32-s − 6·34-s − 4·35-s − 9·37-s − 6·38-s − 4·40-s − 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s + 0.377·7-s + 0.353·8-s − 1.26·10-s − 1.50·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.45·17-s − 1.37·19-s − 0.894·20-s − 1.06·22-s + 1.04·23-s + 11/5·25-s − 0.196·26-s + 0.188·28-s + 0.928·29-s − 0.898·31-s + 0.176·32-s − 1.02·34-s − 0.676·35-s − 1.47·37-s − 0.973·38-s − 0.632·40-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(702\)    =    \(2 \cdot 3^{3} \cdot 13\)
Sign: $-1$
Analytic conductor: \(5.60549\)
Root analytic conductor: \(2.36759\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58160738591835707753460857513, −8.807803396493784636380359236500, −8.175177680256452460931522884422, −7.35680029991455180786399651281, −6.61672779457864729845300517948, −5.05043340362145808941393518904, −4.56312131234610716383609439911, −3.51475991148584634937839178800, −2.38730960948744802020693228411, 0, 2.38730960948744802020693228411, 3.51475991148584634937839178800, 4.56312131234610716383609439911, 5.05043340362145808941393518904, 6.61672779457864729845300517948, 7.35680029991455180786399651281, 8.175177680256452460931522884422, 8.807803396493784636380359236500, 10.58160738591835707753460857513

Graph of the $Z$-function along the critical line