| L(s) = 1 | + 2·3-s − 2·7-s + 3·9-s − 2·11-s + 10·13-s + 12·17-s − 2·19-s − 4·21-s + 2·23-s + 4·27-s + 4·29-s − 2·31-s − 4·33-s + 2·37-s + 20·39-s − 12·41-s + 2·47-s + 49-s + 24·51-s + 4·53-s − 4·57-s − 4·59-s − 18·61-s − 6·63-s − 10·67-s + 4·69-s − 4·71-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.755·7-s + 9-s − 0.603·11-s + 2.77·13-s + 2.91·17-s − 0.458·19-s − 0.872·21-s + 0.417·23-s + 0.769·27-s + 0.742·29-s − 0.359·31-s − 0.696·33-s + 0.328·37-s + 3.20·39-s − 1.87·41-s + 0.291·47-s + 1/7·49-s + 3.36·51-s + 0.549·53-s − 0.529·57-s − 0.520·59-s − 2.30·61-s − 0.755·63-s − 1.22·67-s + 0.481·69-s − 0.474·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 47610000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47610000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(6.187548314\) |
| \(L(\frac12)\) |
\(\approx\) |
\(6.187548314\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.104784856997803094661157477636, −8.064469453634941485872001694336, −7.44822699813276739718488383797, −7.23204890787818267989315165083, −6.63909905754951613797374590135, −6.51891153423254961118135236775, −5.96176092558733571222381817052, −5.76949299741449195740323007541, −5.38936856766440089731674279910, −4.99894245912163190656978098211, −4.32932100485992812867730832759, −4.06708873876119174207213017986, −3.50817757396754464785759795382, −3.39988712825126259588866035357, −2.96950662958396563576396039043, −2.89562950123847344779858423142, −1.96762590284761508250123543892, −1.49679278795648747522742976324, −1.20493256948798574455525916220, −0.60440772824373397582195787242,
0.60440772824373397582195787242, 1.20493256948798574455525916220, 1.49679278795648747522742976324, 1.96762590284761508250123543892, 2.89562950123847344779858423142, 2.96950662958396563576396039043, 3.39988712825126259588866035357, 3.50817757396754464785759795382, 4.06708873876119174207213017986, 4.32932100485992812867730832759, 4.99894245912163190656978098211, 5.38936856766440089731674279910, 5.76949299741449195740323007541, 5.96176092558733571222381817052, 6.51891153423254961118135236775, 6.63909905754951613797374590135, 7.23204890787818267989315165083, 7.44822699813276739718488383797, 8.064469453634941485872001694336, 8.104784856997803094661157477636