Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 92 x^{2} - 94 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.436147703056$, $\pm0.517002742220$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.4873536.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $22$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2206$ | $5289988$ | $10806587350$ | $23775258587344$ | $52595109320271046$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $46$ | $2390$ | $104086$ | $4872294$ | $229327466$ | $10779486950$ | $506624004338$ | $23811278111614$ | $1119130438968622$ | $52599132437250950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=13 x^6+42 x^5+33 x^4+5 x^3+42 x^2+44 x+6$
- $y^2=45 x^6+x^5+30 x^4+31 x^3+36 x^2+41 x+46$
- $y^2=6 x^6+11 x^5+26 x^4+26 x^3+32 x^2+18 x+31$
- $y^2=30 x^6+20 x^5+18 x^4+21 x^3+10 x^2+33 x+38$
- $y^2=13 x^6+7 x^5+7 x^4+32 x^3+18 x^2+x+29$
- $y^2=17 x^6+17 x^5+25 x^4+35 x^3+25 x^2+38 x+40$
- $y^2=31 x^6+16 x^4+23 x^3+3 x^2+46 x+24$
- $y^2=x^6+35 x^5+31 x^4+21 x^3+23 x^2+22 x+29$
- $y^2=22 x^6+41 x^5+26 x^4+18 x^3+6 x^2+23 x+12$
- $y^2=35 x^6+9 x^5+37 x^4+43 x^3+42 x^2+42 x+37$
- $y^2=8 x^6+15 x^5+25 x^4+19 x^3+22 x^2+27 x+4$
- $y^2=8 x^6+45 x^5+39 x^4+35 x^3+3 x^2+28 x+2$
- $y^2=41 x^6+32 x^5+25 x^4+14 x^3+37 x^2+40 x+38$
- $y^2=4 x^6+31 x^5+34 x^4+11 x^3+12 x^2+11 x+43$
- $y^2=17 x^6+24 x^5+5 x^4+22 x^3+16 x^2+34 x+32$
- $y^2=38 x^6+16 x^5+31 x^4+15 x^3+8 x^2+31 x+22$
- $y^2=3 x^6+38 x^5+24 x^4+2 x^3+7 x^2+45 x+20$
- $y^2=32 x^6+34 x^5+32 x^4+8 x^3+10 x^2+18 x+44$
- $y^2=x^6+26 x^5+3 x^4+17 x^3+15 x^2+30 x+8$
- $y^2=32 x^6+38 x^5+35 x^4+23 x^3+43 x^2+34 x+22$
- $y^2=13 x^6+5 x^5+36 x^4+25 x^3+15 x^2+11 x+9$
- $y^2=15 x^6+31 x^5+34 x^4+6 x^3+x^2+42 x+28$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.4873536.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.c_do | $2$ | (not in LMFDB) |