Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x + 35 x^{2} - 212 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.238517347545$, $\pm0.651229295813$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2374416.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $70$ |
| Isomorphism classes: | 126 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2629$ | $8047369$ | $22122603844$ | $62317932278041$ | $174913398603649189$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $2864$ | $148598$ | $7897860$ | $418257490$ | $22164139838$ | $1174710435466$ | $62259687757444$ | $3299763384778814$ | $174887470102589264$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=35 x^6+47 x^5+31 x^4+5 x^3+17 x^2+4 x+40$
- $y^2=24 x^6+33 x^5+2 x^4+46 x^3+18 x^2+14 x+2$
- $y^2=36 x^6+6 x^5+49 x^4+39 x^3+30 x^2+32 x+7$
- $y^2=43 x^6+6 x^5+32 x^4+52 x^3+21 x^2+33 x+36$
- $y^2=29 x^6+17 x^5+50 x^4+45 x^3+31 x^2+32 x+28$
- $y^2=28 x^6+35 x^5+5 x^4+12 x^3+4 x^2+50 x+3$
- $y^2=35 x^6+27 x^5+42 x^4+18 x^3+31 x^2+45 x+43$
- $y^2=27 x^6+43 x^5+27 x^4+3 x^3+33 x^2+42 x+42$
- $y^2=32 x^6+3 x^5+34 x^4+2 x^3+15 x^2+14 x+38$
- $y^2=28 x^6+10 x^5+27 x^4+37 x^3+23 x^2+20 x+45$
- $y^2=32 x^6+31 x^5+18 x^4+38 x^3+46 x^2+48 x+13$
- $y^2=19 x^6+46 x^5+x^4+38 x^3+12 x^2+40 x+13$
- $y^2=15 x^6+45 x^5+40 x^4+44 x^3+22 x^2+2 x+17$
- $y^2=29 x^6+46 x^5+41 x^4+7 x^3+35 x^2+33 x+49$
- $y^2=18 x^6+18 x^5+24 x^4+5 x^3+12 x^2+52 x+6$
- $y^2=14 x^6+19 x^5+37 x^4+42 x^3+21 x^2+46 x+1$
- $y^2=21 x^6+32 x^5+26 x^4+40 x^3+18 x^2+39 x+10$
- $y^2=30 x^6+40 x^5+17 x^4+31 x^3+22 x^2+49 x+34$
- $y^2=8 x^6+23 x^5+16 x^4+31 x^3+52 x^2+32 x+45$
- $y^2=39 x^6+50 x^5+6 x^4+33 x^3+10 x^2+39 x+5$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.2374416.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.e_bj | $2$ | (not in LMFDB) |