-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2629, 'abvar_counts': [2629, 8047369, 22122603844, 62317932278041, 174913398603649189, 491253999487012314256, 1379945434625421183692029, 3876268884886339589911773609, 10888439078654917142545931107876, 30585627244866129424569877011408649], 'abvar_counts_str': '2629 8047369 22122603844 62317932278041 174913398603649189 491253999487012314256 1379945434625421183692029 3876268884886339589911773609 10888439078654917142545931107876 30585627244866129424569877011408649 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.238517347544795, 0.651229295812617], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 50, 'curve_counts': [50, 2864, 148598, 7897860, 418257490, 22164139838, 1174710435466, 62259687757444, 3299763384778814, 174887470102589264], 'curve_counts_str': '50 2864 148598 7897860 418257490 22164139838 1174710435466 62259687757444 3299763384778814 174887470102589264 ', 'curves': ['y^2=35*x^6+47*x^5+31*x^4+5*x^3+17*x^2+4*x+40', 'y^2=24*x^6+33*x^5+2*x^4+46*x^3+18*x^2+14*x+2', 'y^2=36*x^6+6*x^5+49*x^4+39*x^3+30*x^2+32*x+7', 'y^2=43*x^6+6*x^5+32*x^4+52*x^3+21*x^2+33*x+36', 'y^2=29*x^6+17*x^5+50*x^4+45*x^3+31*x^2+32*x+28', 'y^2=28*x^6+35*x^5+5*x^4+12*x^3+4*x^2+50*x+3', 'y^2=35*x^6+27*x^5+42*x^4+18*x^3+31*x^2+45*x+43', 'y^2=27*x^6+43*x^5+27*x^4+3*x^3+33*x^2+42*x+42', 'y^2=32*x^6+3*x^5+34*x^4+2*x^3+15*x^2+14*x+38', 'y^2=28*x^6+10*x^5+27*x^4+37*x^3+23*x^2+20*x+45', 'y^2=32*x^6+31*x^5+18*x^4+38*x^3+46*x^2+48*x+13', 'y^2=19*x^6+46*x^5+x^4+38*x^3+12*x^2+40*x+13', 'y^2=15*x^6+45*x^5+40*x^4+44*x^3+22*x^2+2*x+17', 'y^2=29*x^6+46*x^5+41*x^4+7*x^3+35*x^2+33*x+49', 'y^2=18*x^6+18*x^5+24*x^4+5*x^3+12*x^2+52*x+6', 'y^2=14*x^6+19*x^5+37*x^4+42*x^3+21*x^2+46*x+1', 'y^2=21*x^6+32*x^5+26*x^4+40*x^3+18*x^2+39*x+10', 'y^2=30*x^6+40*x^5+17*x^4+31*x^3+22*x^2+49*x+34', 'y^2=8*x^6+23*x^5+16*x^4+31*x^3+52*x^2+32*x+45', 'y^2=39*x^6+50*x^5+6*x^4+33*x^3+10*x^2+39*x+5', 'y^2=3*x^6+41*x^5+16*x^4+40*x^3+51*x^2+33*x+29', 'y^2=46*x^6+2*x^5+42*x^4+12*x^3+41*x^2+32*x+51', 'y^2=33*x^6+49*x^5+x^4+39*x^3+45*x^2+51*x+4', 'y^2=7*x^6+46*x^5+23*x^4+45*x^3+35*x^2+3*x+35', 'y^2=24*x^6+45*x^5+7*x^4+x^3+25*x^2+48*x+23', 'y^2=x^6+8*x^5+29*x^4+29*x^3+27*x^2+4*x+6', 'y^2=31*x^6+22*x^5+28*x^4+28*x^2+18', 'y^2=37*x^6+47*x^5+36*x^4+50*x^3+24*x^2+49*x+16', 'y^2=43*x^6+46*x^5+27*x^4+40*x^3+20*x^2+48*x+16', 'y^2=6*x^6+9*x^5+48*x^4+3*x^3+34*x^2+2*x+27', 'y^2=2*x^6+16*x^5+52*x^4+2*x^3+31*x^2+x+36', 'y^2=9*x^6+8*x^5+31*x^4+8*x^3+39*x^2+12*x+33', 'y^2=29*x^6+44*x^5+47*x^4+7*x^3+38*x^2+50*x+5', 'y^2=34*x^6+16*x^5+33*x^4+28*x^3+x^2+17*x+38', 'y^2=18*x^6+23*x^5+43*x^4+12*x^3+34*x^2+31*x+52', 'y^2=26*x^6+25*x^5+37*x^4+17*x^3+38*x^2+44*x+30', 'y^2=24*x^6+2*x^5+8*x^4+29*x^3+51*x^2+40*x+21', 'y^2=39*x^6+28*x^5+43*x^4+30*x^3+49*x^2+25*x+39', 'y^2=27*x^6+50*x^5+43*x^4+28*x^3+15*x^2+37*x+8', 'y^2=48*x^6+48*x^5+44*x^4+51*x^3+36*x^2+41*x+20', 'y^2=37*x^6+39*x^5+16*x^4+22*x^3+35*x^2+28*x+22', 'y^2=34*x^6+35*x^5+5*x^4+50*x^3+46*x^2+17*x+35', 'y^2=32*x^6+32*x^5+3*x^4+25*x^3+32*x^2+7*x+14', 'y^2=50*x^6+39*x^5+9*x^4+16*x^3+41*x^2+26*x+30', 'y^2=9*x^6+10*x^5+2*x^4+19*x^3+35*x^2+x+28', 'y^2=21*x^6+3*x^5+29*x^4+9*x^3+26*x^2+52*x+40', 'y^2=41*x^6+4*x^5+41*x^4+51*x^2+36*x+11', 'y^2=40*x^6+21*x^5+37*x^4+46*x^3+18*x^2+39*x+51', 'y^2=6*x^6+4*x^5+3*x^4+25*x^3+21*x^2+22*x+44', 'y^2=39*x^6+39*x^5+10*x^4+23*x^3+42*x^2+39*x+32', 'y^2=11*x^6+23*x^5+5*x^4+41*x^3+x^2+31*x+28', 'y^2=25*x^6+18*x^5+26*x^4+8*x^3+18*x^2+17*x+7', 'y^2=13*x^6+15*x^5+28*x^4+48*x^3+52*x^2+43*x+32', 'y^2=52*x^6+2*x^5+9*x^4+15*x^3+24*x^2+5*x+33', 'y^2=38*x^6+22*x^5+38*x^4+25*x^3+24*x^2+45*x+50', 'y^2=36*x^6+26*x^5+35*x^4+12*x^3+22*x^2+12*x+52', 'y^2=x^6+5*x^5+7*x^4+31*x^3+7*x^2+12*x+22', 'y^2=15*x^6+23*x^5+31*x^3+20*x^2+14*x+21', 'y^2=x^6+2*x^5+40*x^4+33*x^3+7*x^2+40*x+1', 'y^2=24*x^6+15*x^5+41*x^4+51*x^3+6*x^2+34*x+38', 'y^2=x^6+10*x^5+2*x^4+48*x^3+27*x^2+6*x+48', 'y^2=24*x^6+48*x^5+30*x^4+2*x^3+42*x^2+50*x+48', 'y^2=46*x^6+31*x^5+12*x^4+37*x^3+31*x^2+9*x+40', 'y^2=14*x^6+36*x^5+24*x^4+46*x^3+41*x^2+45*x+15', 'y^2=23*x^6+39*x^5+32*x^4+15*x^3+14*x^2+21*x+44', 'y^2=23*x^6+44*x^5+38*x^4+49*x^3+15*x^2+9*x+3', 'y^2=46*x^6+22*x^5+29*x^4+14*x^3+17*x^2+37*x+12', 'y^2=18*x^6+49*x^5+3*x^4+40*x^3+40*x^2+26*x+32', 'y^2=37*x^6+50*x^5+21*x^4+40*x^3+52*x^2+25*x+31', 'y^2=9*x^6+25*x^5+10*x^4+12*x^3+42*x^2+6*x+51'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 2, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.2374416.2'], 'geometric_splitting_field': '4.0.2374416.2', 'geometric_splitting_polynomials': [[1081, -30, 65, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 70, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 70, 'label': '2.53.ae_bj', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.2374416.2'], 'p': 53, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 2, 1, 2], [1, 11, 1, 28], [1, 11, 3, 2], [1, 13, 1, 56]], 'poly': [1, -4, 35, -212, 2809], 'poly_str': '1 -4 35 -212 2809 ', 'primitive_models': [], 'principal_polarization_count': 70, 'q': 53, 'real_poly': [1, -4, -71], 'simple_distinct': ['2.53.ae_bj'], 'simple_factors': ['2.53.ae_bjA'], 'simple_multiplicities': [1], 'singular_primes': ['5,-7*F^2-9*F-3*V-10'], 'size': 126, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.2374416.2', 'splitting_polynomials': [[1081, -30, 65, 0, 1]], 'twist_count': 2, 'twists': [['2.53.e_bj', '2.2809.cc_hpz', 2]], 'weak_equivalence_count': 2, 'zfv_index': 25, 'zfv_index_factorization': [[5, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 112, 'zfv_plus_index': 5, 'zfv_plus_index_factorization': [[5, 1]], 'zfv_plus_norm': 16489, 'zfv_singular_count': 2, 'zfv_singular_primes': ['5,-7*F^2-9*F-3*V-10']}
-
av_fq_endalg_factors • Show schema
Hide schema
{'base_label': '2.53.ae_bj', 'extension_degree': 1, 'extension_label': '2.53.ae_bj', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.2374416.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.53.ae_bj', 'galois_group': '4T3', 'places': [['22', '46', '38', '3'], ['5', '50', '10', '51']]}