Properties

Label 2-6800-1.1-c1-0-49
Degree $2$
Conductor $6800$
Sign $1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·9-s + 4·11-s + 13-s − 17-s + 6·19-s − 21-s + 5·27-s + 7·31-s − 4·33-s + 4·37-s − 39-s − 2·41-s + 4·43-s − 6·47-s − 6·49-s + 51-s − 11·53-s − 6·57-s − 8·59-s + 10·61-s − 2·63-s + 8·67-s − 7·71-s − 4·73-s + 4·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s − 2/3·9-s + 1.20·11-s + 0.277·13-s − 0.242·17-s + 1.37·19-s − 0.218·21-s + 0.962·27-s + 1.25·31-s − 0.696·33-s + 0.657·37-s − 0.160·39-s − 0.312·41-s + 0.609·43-s − 0.875·47-s − 6/7·49-s + 0.140·51-s − 1.51·53-s − 0.794·57-s − 1.04·59-s + 1.28·61-s − 0.251·63-s + 0.977·67-s − 0.830·71-s − 0.468·73-s + 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.796755543\)
\(L(\frac12)\) \(\approx\) \(1.796755543\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.046711301639399596916554123287, −7.19145298376916179047365397233, −6.38671630639600937963870420667, −6.01545261579017102801571670117, −5.08840369959606090935834967277, −4.55346366719129408738575943973, −3.55761606791559378659420145671, −2.83832178803906560836186038687, −1.60763108315141353265305040310, −0.75051932536388600511539141931, 0.75051932536388600511539141931, 1.60763108315141353265305040310, 2.83832178803906560836186038687, 3.55761606791559378659420145671, 4.55346366719129408738575943973, 5.08840369959606090935834967277, 6.01545261579017102801571670117, 6.38671630639600937963870420667, 7.19145298376916179047365397233, 8.046711301639399596916554123287

Graph of the $Z$-function along the critical line