Properties

Label 2-675-1.1-c1-0-9
Degree $2$
Conductor $675$
Sign $1$
Analytic cond. $5.38990$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s + 5·11-s + 5·13-s − 16-s + 4·17-s − 2·19-s + 5·22-s − 3·23-s + 5·26-s + 10·29-s + 6·31-s + 5·32-s + 4·34-s − 5·37-s − 2·38-s + 10·41-s − 10·43-s − 5·44-s − 3·46-s − 5·47-s − 7·49-s − 5·52-s − 2·53-s + 10·58-s + 5·59-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s + 1.50·11-s + 1.38·13-s − 1/4·16-s + 0.970·17-s − 0.458·19-s + 1.06·22-s − 0.625·23-s + 0.980·26-s + 1.85·29-s + 1.07·31-s + 0.883·32-s + 0.685·34-s − 0.821·37-s − 0.324·38-s + 1.56·41-s − 1.52·43-s − 0.753·44-s − 0.442·46-s − 0.729·47-s − 49-s − 0.693·52-s − 0.274·53-s + 1.31·58-s + 0.650·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(5.38990\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.991119528\)
\(L(\frac12)\) \(\approx\) \(1.991119528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47476969904140521612928427933, −9.594380714160926227112344225322, −8.728922113712677747638974228180, −8.110625633965123632872532116674, −6.47087996746914035408335230406, −6.14513598061725646029734075717, −4.84886591033793439685261848050, −3.97564733739679917868066949463, −3.18705877871324552307068063652, −1.22726947298899977457345127093, 1.22726947298899977457345127093, 3.18705877871324552307068063652, 3.97564733739679917868066949463, 4.84886591033793439685261848050, 6.14513598061725646029734075717, 6.47087996746914035408335230406, 8.110625633965123632872532116674, 8.728922113712677747638974228180, 9.594380714160926227112344225322, 10.47476969904140521612928427933

Graph of the $Z$-function along the critical line