L(s) = 1 | − 2·3-s − 2·4-s − 2·5-s + 3·9-s − 2·11-s + 4·12-s − 2·13-s + 4·15-s + 6·17-s − 12·19-s + 4·20-s + 2·23-s + 3·25-s − 4·27-s − 10·31-s + 4·33-s − 6·36-s − 8·37-s + 4·39-s − 2·41-s − 2·43-s + 4·44-s − 6·45-s − 4·47-s − 12·49-s − 12·51-s + 4·52-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 4-s − 0.894·5-s + 9-s − 0.603·11-s + 1.15·12-s − 0.554·13-s + 1.03·15-s + 1.45·17-s − 2.75·19-s + 0.894·20-s + 0.417·23-s + 3/5·25-s − 0.769·27-s − 1.79·31-s + 0.696·33-s − 36-s − 1.31·37-s + 0.640·39-s − 0.312·41-s − 0.304·43-s + 0.603·44-s − 0.894·45-s − 0.583·47-s − 1.71·49-s − 1.68·51-s + 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35125905352681040284523681625, −10.22959359202811319606860551463, −9.321427457682005521780802979389, −9.214172307365881797231462124464, −8.494201877992222164795775575360, −8.260696901557407710627771940853, −7.64272717185928922189673254627, −7.33127065196266707683181802294, −6.71022550151055970429019747872, −6.32281330911682488468235756354, −5.72414407781646793399326289735, −5.12778551605474033940845589497, −4.83162809834509413773597466339, −4.48873361601401164359794802789, −3.70214419165706644951983782538, −3.48474942075808157329737067321, −2.36113121337548442900681845434, −1.49376989590777575546609911799, 0, 0,
1.49376989590777575546609911799, 2.36113121337548442900681845434, 3.48474942075808157329737067321, 3.70214419165706644951983782538, 4.48873361601401164359794802789, 4.83162809834509413773597466339, 5.12778551605474033940845589497, 5.72414407781646793399326289735, 6.32281330911682488468235756354, 6.71022550151055970429019747872, 7.33127065196266707683181802294, 7.64272717185928922189673254627, 8.260696901557407710627771940853, 8.494201877992222164795775575360, 9.214172307365881797231462124464, 9.321427457682005521780802979389, 10.22959359202811319606860551463, 10.35125905352681040284523681625