Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 82 x^{2} + 296 x^{3} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.530701681495$, $\pm0.689696011132$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.59456.2 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 90 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1756$ | $2015888$ | $2537112700$ | $3511451116544$ | $4809306263751196$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $1470$ | $50086$ | $1873614$ | $69354366$ | $2565719310$ | $94932020278$ | $3512476560414$ | $129961739058382$ | $4808584582928350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=25 x^6+28 x^5+9 x^4+24 x^3+33 x^2+32 x+10$
- $y^2=33 x^6+20 x^5+21 x^4+17 x^3+29 x^2+15 x+34$
- $y^2=18 x^6+22 x^5+3 x^4+24 x^3+24 x^2+27 x+7$
- $y^2=26 x^6+7 x^5+28 x^4+30 x^3+8 x^2+18 x+34$
- $y^2=11 x^6+25 x^5+16 x^4+11 x^3+20 x^2+12 x$
- $y^2=7 x^6+9 x^5+6 x^4+23 x^3+30 x^2+27 x+30$
- $y^2=x^6+13 x^5+16 x^4+17 x^3+9 x^2+4 x+24$
- $y^2=x^6+4 x^5+29 x^4+5 x^3+15 x^2+20 x+19$
- $y^2=28 x^6+2 x^5+16 x^4+19 x^3+17 x^2+36 x+36$
- $y^2=4 x^6+33 x^5+x^4+15 x^3+4 x^2+24 x+8$
- $y^2=31 x^6+33 x^5+11 x^4+4 x^3+33 x^2+20 x+23$
- $y^2=8 x^6+5 x^5+18 x^4+14 x^3+14 x^2+33 x+36$
- $y^2=x^6+32 x^5+7 x^4+32 x^3+18 x^2+34 x+34$
- $y^2=31 x^6+35 x^5+22 x^4+15 x^3+24 x^2+2 x+26$
- $y^2=30 x^6+24 x^5+27 x^4+34 x^3+30 x^2+18 x+32$
- $y^2=22 x^6+35 x^5+23 x^4+12 x^3+5 x^2+32 x+13$
- $y^2=19 x^6+29 x^5+15 x^4+23 x^3+6 x^2+24 x+8$
- $y^2=21 x^6+29 x^5+29 x^4+x^3+34 x^2+23 x+7$
- $y^2=34 x^6+15 x^5+x^4+2 x^3+20 x^2+31 x+15$
- $y^2=4 x^6+2 x^5+27 x^4+4 x^3+28 x^2+33 x+10$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is 4.0.59456.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.ai_de | $2$ | (not in LMFDB) |