Properties

Label 2.37.i_de
Base field $\F_{37}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{37}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 82 x^{2} + 296 x^{3} + 1369 x^{4}$
Frobenius angles:  $\pm0.530701681495$, $\pm0.689696011132$
Angle rank:  $2$ (numerical)
Number field:  4.0.59456.2
Galois group:  $D_{4}$
Jacobians:  $72$
Isomorphism classes:  90

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1756$ $2015888$ $2537112700$ $3511451116544$ $4809306263751196$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $1470$ $50086$ $1873614$ $69354366$ $2565719310$ $94932020278$ $3512476560414$ $129961739058382$ $4808584582928350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{37}$.

Endomorphism algebra over $\F_{37}$
The endomorphism algebra of this simple isogeny class is 4.0.59456.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.37.ai_de$2$(not in LMFDB)