Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 224 x^{2} - 1424 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.275246639974$, $\pm0.436185264727$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4509952.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6706$ | $64283716$ | $498664711762$ | $3936841993078288$ | $31181332981014377266$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $8114$ | $707354$ | $62746278$ | $5583990154$ | $496981152146$ | $44231335060378$ | $3936588708787774$ | $350356402471149962$ | $31181719933227929714$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=33 x^6+x^5+75 x^4+31 x^3+10 x^2+x+53$
- $y^2=40 x^5+52 x^4+6 x^3+54 x^2+46 x+49$
- $y^2=9 x^6+27 x^5+74 x^4+10 x^3+67 x^2+69 x+71$
- $y^2=64 x^6+7 x^5+26 x^4+14 x^3+52 x^2+7 x+17$
- $y^2=32 x^6+5 x^5+83 x^4+50 x^3+71 x^2+70 x+67$
- $y^2=59 x^6+53 x^5+58 x^4+81 x^3+42 x^2+29 x+46$
- $y^2=63 x^6+x^5+85 x^4+29 x^3+39 x^2+59 x+15$
- $y^2=71 x^6+58 x^5+14 x^4+43 x^3+25 x^2+38 x+30$
- $y^2=65 x^6+50 x^5+52 x^4+47 x^3+65 x^2+43 x+3$
- $y^2=15 x^6+81 x^5+73 x^4+9 x^3+41 x^2+68 x+17$
- $y^2=48 x^6+74 x^5+4 x^4+55 x^3+79 x^2+56 x+26$
- $y^2=33 x^6+27 x^5+83 x^4+31 x^3+25 x^2+84 x+85$
- $y^2=71 x^6+30 x^5+72 x^4+39 x^3+22 x^2+80 x+57$
- $y^2=40 x^6+57 x^5+51 x^4+59 x^3+82 x^2+48 x+47$
- $y^2=14 x^6+30 x^5+25 x^4+88 x^3+14 x^2+2 x+20$
- $y^2=64 x^6+59 x^5+20 x^4+7 x^3+3 x^2+8 x+54$
- $y^2=43 x^6+3 x^5+42 x^4+47 x^3+48 x^2+13 x+37$
- $y^2=27 x^6+83 x^5+64 x^4+39 x^3+38 x^2+21 x+27$
- $y^2=48 x^6+70 x^5+17 x^4+35 x^3+79 x^2+60 x+22$
- $y^2=27 x^6+3 x^5+85 x^4+7 x^3+x^2+24 x+29$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.4509952.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.q_iq | $2$ | (not in LMFDB) |