L(s) = 1 | + 2·3-s − 2·7-s + 3·9-s − 4·11-s − 2·19-s − 4·21-s − 4·23-s − 2·25-s + 4·27-s + 4·29-s − 8·31-s − 8·33-s + 4·37-s − 4·41-s − 16·43-s + 3·49-s + 4·53-s − 4·57-s + 8·59-s − 4·61-s − 6·63-s − 20·67-s − 8·69-s + 8·71-s − 12·73-s − 4·75-s + 8·77-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.755·7-s + 9-s − 1.20·11-s − 0.458·19-s − 0.872·21-s − 0.834·23-s − 2/5·25-s + 0.769·27-s + 0.742·29-s − 1.43·31-s − 1.39·33-s + 0.657·37-s − 0.624·41-s − 2.43·43-s + 3/7·49-s + 0.549·53-s − 0.529·57-s + 1.04·59-s − 0.512·61-s − 0.755·63-s − 2.44·67-s − 0.963·69-s + 0.949·71-s − 1.40·73-s − 0.461·75-s + 0.911·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 40755456 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40755456 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.86936009335166280823836277351, −7.66680224764490507555531813850, −7.10168349987249283410269549321, −6.96713868826347347861929559649, −6.41345368500381701368320915916, −6.28300535241647708406574508837, −5.52939615381435575439154500035, −5.49782875112792288550556337822, −4.96820009889317128377389393233, −4.52317245590552112360044059549, −3.98371667735616950321781318018, −3.90136767644913125721922483917, −3.22037150882976994374167045890, −3.05744508154651150166606782529, −2.56069661635253052208610395959, −2.22001250128405304542165422325, −1.69055406868545000811437621423, −1.23156185915157281683590494997, 0, 0,
1.23156185915157281683590494997, 1.69055406868545000811437621423, 2.22001250128405304542165422325, 2.56069661635253052208610395959, 3.05744508154651150166606782529, 3.22037150882976994374167045890, 3.90136767644913125721922483917, 3.98371667735616950321781318018, 4.52317245590552112360044059549, 4.96820009889317128377389393233, 5.49782875112792288550556337822, 5.52939615381435575439154500035, 6.28300535241647708406574508837, 6.41345368500381701368320915916, 6.96713868826347347861929559649, 7.10168349987249283410269549321, 7.66680224764490507555531813850, 7.86936009335166280823836277351