Properties

Label 2-6336-1.1-c1-0-98
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 11-s − 4·13-s − 6·17-s − 2·19-s − 6·23-s − 25-s − 2·29-s − 8·31-s + 8·35-s − 6·37-s − 2·41-s + 6·43-s + 2·47-s + 9·49-s − 6·53-s + 2·55-s + 8·59-s + 12·61-s + 8·65-s − 4·67-s + 14·71-s − 10·73-s + 4·77-s − 8·79-s + 4·83-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 0.301·11-s − 1.10·13-s − 1.45·17-s − 0.458·19-s − 1.25·23-s − 1/5·25-s − 0.371·29-s − 1.43·31-s + 1.35·35-s − 0.986·37-s − 0.312·41-s + 0.914·43-s + 0.291·47-s + 9/7·49-s − 0.824·53-s + 0.269·55-s + 1.04·59-s + 1.53·61-s + 0.992·65-s − 0.488·67-s + 1.66·71-s − 1.17·73-s + 0.455·77-s − 0.900·79-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.14553397308808796144989472946, −6.85232483972482117507115236442, −5.96428832059467357853195786803, −5.20600307749914949530578180690, −4.10651821997780985470584323025, −3.82055440693277025750311035124, −2.76293612676071792007297692671, −2.05217675695395051603615365581, 0, 0, 2.05217675695395051603615365581, 2.76293612676071792007297692671, 3.82055440693277025750311035124, 4.10651821997780985470584323025, 5.20600307749914949530578180690, 5.96428832059467357853195786803, 6.85232483972482117507115236442, 7.14553397308808796144989472946

Graph of the $Z$-function along the critical line