Properties

Label 2-624-1.1-c1-0-10
Degree $2$
Conductor $624$
Sign $-1$
Analytic cond. $4.98266$
Root an. cond. $2.23218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 6·11-s − 13-s + 2·17-s − 4·23-s − 5·25-s − 27-s − 6·29-s + 4·31-s + 6·33-s − 2·37-s + 39-s − 4·43-s − 10·47-s − 7·49-s − 2·51-s − 10·53-s + 6·59-s − 6·61-s + 12·67-s + 4·69-s − 2·71-s + 6·73-s + 5·75-s + 16·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.80·11-s − 0.277·13-s + 0.485·17-s − 0.834·23-s − 25-s − 0.192·27-s − 1.11·29-s + 0.718·31-s + 1.04·33-s − 0.328·37-s + 0.160·39-s − 0.609·43-s − 1.45·47-s − 49-s − 0.280·51-s − 1.37·53-s + 0.781·59-s − 0.768·61-s + 1.46·67-s + 0.481·69-s − 0.237·71-s + 0.702·73-s + 0.577·75-s + 1.80·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(4.98266\)
Root analytic conductor: \(2.23218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15630188499991457516970890674, −9.623331085660540106579040249977, −8.109170288766974377318628852457, −7.70721800445715600502657637543, −6.46852629489327197023949075773, −5.50835748283028813340348869563, −4.80983646216625589523400190905, −3.41767268718365275694731336535, −2.05225824663803178760552738615, 0, 2.05225824663803178760552738615, 3.41767268718365275694731336535, 4.80983646216625589523400190905, 5.50835748283028813340348869563, 6.46852629489327197023949075773, 7.70721800445715600502657637543, 8.109170288766974377318628852457, 9.623331085660540106579040249977, 10.15630188499991457516970890674

Graph of the $Z$-function along the critical line