Properties

Label 2-6210-1.1-c1-0-101
Degree $2$
Conductor $6210$
Sign $-1$
Analytic cond. $49.5870$
Root an. cond. $7.04181$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 7-s + 8-s − 10-s − 13-s − 14-s + 16-s − 3·17-s + 5·19-s − 20-s − 23-s + 25-s − 26-s − 28-s + 6·29-s − 10·31-s + 32-s − 3·34-s + 35-s − 10·37-s + 5·38-s − 40-s + 6·41-s − 43-s − 46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s + 1.14·19-s − 0.223·20-s − 0.208·23-s + 1/5·25-s − 0.196·26-s − 0.188·28-s + 1.11·29-s − 1.79·31-s + 0.176·32-s − 0.514·34-s + 0.169·35-s − 1.64·37-s + 0.811·38-s − 0.158·40-s + 0.937·41-s − 0.152·43-s − 0.147·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6210\)    =    \(2 \cdot 3^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(49.5870\)
Root analytic conductor: \(7.04181\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6210,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 5 T + p T^{2} \) 1.19.af
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52439263365442147750318270815, −6.92620379729250966464225740896, −6.33533290579671143567009426794, −5.36523146894131907230426334646, −4.90193298235546671738135983492, −3.93821504103483897115872873107, −3.35967563259678248449739699961, −2.52970737779096206015496269051, −1.45981677192941262208840341188, 0, 1.45981677192941262208840341188, 2.52970737779096206015496269051, 3.35967563259678248449739699961, 3.93821504103483897115872873107, 4.90193298235546671738135983492, 5.36523146894131907230426334646, 6.33533290579671143567009426794, 6.92620379729250966464225740896, 7.52439263365442147750318270815

Graph of the $Z$-function along the critical line