Properties

Label 2-5760-1.1-c1-0-53
Degree $2$
Conductor $5760$
Sign $-1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·11-s − 2·13-s − 6·17-s + 6·19-s + 25-s + 10·29-s + 8·31-s − 2·37-s + 6·41-s − 2·43-s − 12·47-s − 7·49-s + 10·53-s + 2·55-s + 6·59-s + 6·61-s + 2·65-s − 14·67-s − 4·71-s − 10·73-s − 8·79-s − 10·83-s + 6·85-s − 14·89-s − 6·95-s + 6·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.603·11-s − 0.554·13-s − 1.45·17-s + 1.37·19-s + 1/5·25-s + 1.85·29-s + 1.43·31-s − 0.328·37-s + 0.937·41-s − 0.304·43-s − 1.75·47-s − 49-s + 1.37·53-s + 0.269·55-s + 0.781·59-s + 0.768·61-s + 0.248·65-s − 1.71·67-s − 0.474·71-s − 1.17·73-s − 0.900·79-s − 1.09·83-s + 0.650·85-s − 1.48·89-s − 0.615·95-s + 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81285724909768979483935524520, −7.01451501362389941870110582286, −6.51504632102335022204754268649, −5.51187964090898831671882097488, −4.75030050500533126512039347875, −4.26300454340832865134380080126, −3.03453794048438755656055087155, −2.58066945500031817459832592662, −1.24078453169086437489255286634, 0, 1.24078453169086437489255286634, 2.58066945500031817459832592662, 3.03453794048438755656055087155, 4.26300454340832865134380080126, 4.75030050500533126512039347875, 5.51187964090898831671882097488, 6.51504632102335022204754268649, 7.01451501362389941870110582286, 7.81285724909768979483935524520

Graph of the $Z$-function along the critical line