L(s) = 1 | − 2·3-s − 3·5-s + 2·7-s + 3·9-s − 7·11-s + 13-s + 6·15-s − 2·17-s + 6·19-s − 4·21-s + 6·23-s + 25-s − 4·27-s − 16·31-s + 14·33-s − 6·35-s + 7·37-s − 2·39-s + 14·41-s − 15·43-s − 9·45-s − 16·47-s + 3·49-s + 4·51-s + 3·53-s + 21·55-s − 12·57-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.34·5-s + 0.755·7-s + 9-s − 2.11·11-s + 0.277·13-s + 1.54·15-s − 0.485·17-s + 1.37·19-s − 0.872·21-s + 1.25·23-s + 1/5·25-s − 0.769·27-s − 2.87·31-s + 2.43·33-s − 1.01·35-s + 1.15·37-s − 0.320·39-s + 2.18·41-s − 2.28·43-s − 1.34·45-s − 2.33·47-s + 3/7·49-s + 0.560·51-s + 0.412·53-s + 2.83·55-s − 1.58·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 32626944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32626944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.085471496\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.085471496\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.989225787399187307779335174638, −7.82421552109261245101092341784, −7.59597315329272320494037174514, −7.45360478561353335826796273051, −6.96222231638771360017059525648, −6.58288354508234442825331501380, −6.02740286337534784466313001178, −5.76866091507498555124765446134, −5.24231420979671537039604108297, −5.06998544905286549631578770957, −4.76246842215950926495776152189, −4.56710282705782533223290804686, −3.79413252909244216867603455568, −3.48622765927943495814725213061, −3.24829794108260367532279464655, −2.58340458711967822035476814784, −1.96577994631501865148168382198, −1.62780839715320124975554819180, −0.58789663510534964853950696107, −0.52732602809611688722583711070,
0.52732602809611688722583711070, 0.58789663510534964853950696107, 1.62780839715320124975554819180, 1.96577994631501865148168382198, 2.58340458711967822035476814784, 3.24829794108260367532279464655, 3.48622765927943495814725213061, 3.79413252909244216867603455568, 4.56710282705782533223290804686, 4.76246842215950926495776152189, 5.06998544905286549631578770957, 5.24231420979671537039604108297, 5.76866091507498555124765446134, 6.02740286337534784466313001178, 6.58288354508234442825331501380, 6.96222231638771360017059525648, 7.45360478561353335826796273051, 7.59597315329272320494037174514, 7.82421552109261245101092341784, 7.989225787399187307779335174638