Properties

Label 2.83.n_go
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 + 13 x + 170 x^{2} + 1079 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.505509142191$, $\pm0.745110067260$
Angle rank:  $2$ (numerical)
Number field:  4.0.4102933.1
Galois group:  $D_{4}$
Jacobians:  $150$
Isomorphism classes:  150

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8152$ $48651136$ $326257746208$ $2252292470242816$ $15515762164375630792$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $97$ $7061$ $570592$ $47458329$ $3938969807$ $326941405526$ $27136057845581$ $2252292043930033$ $186940255923045280$ $15516041196171725621$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.4102933.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.an_go$2$(not in LMFDB)