Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 13 x + 170 x^{2} + 1079 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.505509142191$, $\pm0.745110067260$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4102933.1 |
Galois group: | $D_{4}$ |
Jacobians: | $150$ |
Isomorphism classes: | 150 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $8152$ | $48651136$ | $326257746208$ | $2252292470242816$ | $15515762164375630792$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $97$ | $7061$ | $570592$ | $47458329$ | $3938969807$ | $326941405526$ | $27136057845581$ | $2252292043930033$ | $186940255923045280$ | $15516041196171725621$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 150 curves (of which all are hyperelliptic):
- $y^2=12 x^6+37 x^5+49 x^4+11 x^3+74 x^2+56 x+72$
- $y^2=40 x^6+47 x^5+6 x^4+82 x^3+82 x^2+42 x+28$
- $y^2=25 x^6+70 x^5+72 x^4+63 x^3+44 x^2+14 x+64$
- $y^2=19 x^6+36 x^5+51 x^4+10 x^3+17 x^2+30 x+51$
- $y^2=57 x^6+25 x^5+8 x^4+14 x^3+49 x^2+35 x+4$
- $y^2=20 x^6+77 x^5+6 x^4+51 x^3+61 x^2+10 x+10$
- $y^2=14 x^6+79 x^5+67 x^4+64 x^3+15 x^2+42 x+38$
- $y^2=26 x^6+38 x^5+69 x^4+34 x^3+68 x^2+40 x+51$
- $y^2=11 x^6+25 x^5+7 x^4+7 x^3+67 x^2+7 x+46$
- $y^2=44 x^6+27 x^5+56 x^4+12 x^3+76 x^2+52 x+10$
- $y^2=44 x^6+21 x^5+38 x^4+41 x^3+7 x^2+32 x+59$
- $y^2=5 x^6+44 x^5+2 x^4+25 x^3+4 x^2+20 x+82$
- $y^2=7 x^6+27 x^5+74 x^4+18 x^3+59 x^2+40 x+11$
- $y^2=45 x^6+x^5+21 x^4+77 x^3+54 x^2+58 x+35$
- $y^2=6 x^6+65 x^5+32 x^4+78 x^3+33 x^2+76 x+24$
- $y^2=59 x^6+26 x^5+42 x^4+69 x^3+29 x^2+18 x+49$
- $y^2=47 x^6+79 x^5+9 x^4+32 x^3+11 x^2+29 x+23$
- $y^2=4 x^6+62 x^5+75 x^4+31 x^3+71 x^2+50 x+55$
- $y^2=81 x^6+x^5+7 x^4+64 x^3+16 x^2+40 x+75$
- $y^2=53 x^6+65 x^5+13 x^4+74 x^3+24 x^2+60 x+37$
- and 130 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.4102933.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.an_go | $2$ | (not in LMFDB) |