Properties

Label 2.53.ad_ea
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 - 3 x + 104 x^{2} - 159 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.421340579918$, $\pm0.512279495620$
Angle rank:  $2$ (numerical)
Number field:  4.0.762093.1
Galois group:  $D_{4}$
Jacobians:  $56$
Isomorphism classes:  56

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2752$ $8465152$ $22228927744$ $62191541689344$ $174874597587201472$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $51$ $3009$ $149310$ $7881841$ $418164711$ $22164677142$ $1174712701899$ $62259681610369$ $3299763539660166$ $174887470485080409$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is 4.0.762093.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.d_ea$2$(not in LMFDB)