Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x + 104 x^{2} - 159 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.421340579918$, $\pm0.512279495620$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.762093.1 |
Galois group: | $D_{4}$ |
Jacobians: | $56$ |
Isomorphism classes: | 56 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2752$ | $8465152$ | $22228927744$ | $62191541689344$ | $174874597587201472$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $51$ | $3009$ | $149310$ | $7881841$ | $418164711$ | $22164677142$ | $1174712701899$ | $62259681610369$ | $3299763539660166$ | $174887470485080409$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=7 x^6+50 x^5+39 x^4+27 x^3+3 x^2+8 x+40$
- $y^2=30 x^6+17 x^5+45 x^4+16 x^3+26 x^2+27 x+46$
- $y^2=10 x^6+37 x^5+13 x^4+39 x^3+12 x^2+38 x+31$
- $y^2=38 x^6+13 x^5+16 x^4+28 x^3+47 x^2+41 x+52$
- $y^2=9 x^6+39 x^5+29 x^4+44 x^3+24 x+20$
- $y^2=2 x^6+38 x^5+35 x^4+9 x^3+45 x^2+39 x+8$
- $y^2=34 x^6+37 x^5+5 x^4+43 x^3+23 x^2+33 x+29$
- $y^2=31 x^6+43 x^5+10 x^4+2 x^3+39 x^2+52 x+32$
- $y^2=42 x^6+41 x^4+14 x^3+5 x^2+6 x+9$
- $y^2=26 x^6+31 x^5+43 x^4+29 x^3+11 x^2+20 x+52$
- $y^2=7 x^6+9 x^5+36 x^4+19 x^3+11 x+27$
- $y^2=7 x^6+37 x^5+46 x^4+49 x^3+16 x^2+19 x+28$
- $y^2=7 x^6+14 x^5+7 x^4+37 x^3+50 x^2+50 x+17$
- $y^2=50 x^6+5 x^5+28 x^4+36 x^3+2 x^2+25$
- $y^2=23 x^6+3 x^5+29 x^4+17 x^3+6 x^2+35 x+16$
- $y^2=7 x^6+20 x^5+13 x^4+17 x^3+3 x^2+4 x+2$
- $y^2=4 x^6+42 x^5+42 x^4+39 x^3+10 x^2+29 x+46$
- $y^2=20 x^6+44 x^5+19 x^3+3 x^2+8 x+34$
- $y^2=14 x^6+14 x^5+35 x^4+5 x^3+16 x^2+15 x+44$
- $y^2=6 x^6+33 x^5+30 x^4+34 x^3+6 x^2+25 x+31$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.762093.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.d_ea | $2$ | (not in LMFDB) |