L(s) = 1 | − 2·3-s − 3·5-s − 2·7-s + 3·9-s − 3·11-s + 13-s + 6·15-s + 2·17-s − 4·19-s + 4·21-s + 6·23-s + 5·25-s − 4·27-s + 6·29-s − 16·31-s + 6·33-s + 6·35-s + 7·37-s − 2·39-s − 6·41-s − 7·43-s − 9·45-s + 3·49-s − 4·51-s + 3·53-s + 9·55-s + 8·57-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.34·5-s − 0.755·7-s + 9-s − 0.904·11-s + 0.277·13-s + 1.54·15-s + 0.485·17-s − 0.917·19-s + 0.872·21-s + 1.25·23-s + 25-s − 0.769·27-s + 1.11·29-s − 2.87·31-s + 1.04·33-s + 1.01·35-s + 1.15·37-s − 0.320·39-s − 0.937·41-s − 1.06·43-s − 1.34·45-s + 3/7·49-s − 0.560·51-s + 0.412·53-s + 1.21·55-s + 1.05·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 32626944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32626944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.73361887612881136652914033128, −7.64221647061547974806344745227, −7.18530602752001091787139755510, −6.86113750709348235866530374526, −6.56811559952778590700930687023, −6.24672266095772684540076642313, −5.75816092935465498805275204569, −5.37372507105355811644174497669, −5.02762846400117920809429997438, −4.84894709022249698169384630205, −4.18423711371031854527468907151, −3.96998930405618469738071453089, −3.44537484219913477403185169099, −3.24652447783238928017247507670, −2.63938156536672555404900057527, −2.13189504087356797400154286994, −1.38651459628156348440289711404, −0.861540058274778257144946014590, 0, 0,
0.861540058274778257144946014590, 1.38651459628156348440289711404, 2.13189504087356797400154286994, 2.63938156536672555404900057527, 3.24652447783238928017247507670, 3.44537484219913477403185169099, 3.96998930405618469738071453089, 4.18423711371031854527468907151, 4.84894709022249698169384630205, 5.02762846400117920809429997438, 5.37372507105355811644174497669, 5.75816092935465498805275204569, 6.24672266095772684540076642313, 6.56811559952778590700930687023, 6.86113750709348235866530374526, 7.18530602752001091787139755510, 7.64221647061547974806344745227, 7.73361887612881136652914033128