Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 15 x + 148 x^{2} - 1245 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.154481465665$, $\pm0.519522970985$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.26022744.1 |
Galois group: | $D_{4}$ |
Jacobians: | $176$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5778$ | $47945844$ | $326684260296$ | $2251894702019616$ | $15516563810892968718$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $69$ | $6961$ | $571338$ | $47449945$ | $3939173319$ | $326942553922$ | $27136056732693$ | $2252292218452849$ | $186940256013063054$ | $15516041192542542961$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 176 curves (of which all are hyperelliptic):
- $y^2=82 x^6+15 x^5+50 x^4+17 x^3+26 x^2+17 x+57$
- $y^2=6 x^6+72 x^4+39 x^3+30 x^2+26 x+56$
- $y^2=22 x^6+10 x^5+34 x^4+33 x^3+2 x+52$
- $y^2=72 x^6+30 x^5+20 x^4+80 x^3+3 x^2+62 x+15$
- $y^2=62 x^6+11 x^5+34 x^4+80 x^3+70 x^2+56 x+21$
- $y^2=52 x^6+12 x^5+78 x^4+56 x^3+54 x^2+33 x+11$
- $y^2=18 x^6+5 x^5+30 x^4+46 x^3+38 x^2+7 x+17$
- $y^2=49 x^6+70 x^5+17 x^4+20 x^3+66 x^2+59 x+60$
- $y^2=75 x^6+54 x^5+76 x^4+40 x^3+60 x^2+33 x+70$
- $y^2=42 x^6+33 x^5+79 x^4+68 x^3+49 x^2+60 x+80$
- $y^2=46 x^6+64 x^5+7 x^4+61 x^3+59 x^2+70 x+58$
- $y^2=18 x^6+76 x^5+76 x^4+57 x^3+71 x^2+34 x+54$
- $y^2=57 x^6+10 x^5+59 x^4+45 x^3+8 x^2+80 x+42$
- $y^2=75 x^6+34 x^5+14 x^4+78 x^3+35 x^2+79 x+38$
- $y^2=14 x^6+42 x^5+27 x^4+52 x^3+50 x^2+54 x+81$
- $y^2=3 x^6+25 x^5+9 x^4+2 x^3+32 x^2+50 x+76$
- $y^2=69 x^6+76 x^5+77 x^4+15 x^3+11 x^2+54 x+49$
- $y^2=77 x^6+53 x^5+45 x^4+19 x^3+32 x^2+37 x+54$
- $y^2=33 x^6+57 x^5+4 x^4+20 x^3+24 x^2+47 x+52$
- $y^2=48 x^6+75 x^5+79 x^4+53 x^3+6 x^2+25 x+3$
- and 156 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.26022744.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.p_fs | $2$ | (not in LMFDB) |