Properties

Label 5712.2.a.bd
Level $5712$
Weight $2$
Character orbit 5712.a
Self dual yes
Analytic conductor $45.611$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5712,2,Mod(1,5712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5712.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-3,0,-2,0,2,0,-3,0,1,0,3,0,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 714)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta - 1) q^{5} - q^{7} + q^{9} + ( - \beta - 1) q^{11} + ( - \beta + 1) q^{13} + (\beta + 1) q^{15} + q^{17} - 2 q^{19} + q^{21} + (2 \beta + 2) q^{23} + (3 \beta + 4) q^{25} - q^{27}+ \cdots + ( - \beta - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 3 q^{5} - 2 q^{7} + 2 q^{9} - 3 q^{11} + q^{13} + 3 q^{15} + 2 q^{17} - 4 q^{19} + 2 q^{21} + 6 q^{23} + 11 q^{25} - 2 q^{27} + 6 q^{29} - 16 q^{31} + 3 q^{33} + 3 q^{35} + 7 q^{37} - q^{39}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
0 −1.00000 0 −4.37228 0 −1.00000 0 1.00000 0
1.2 0 −1.00000 0 1.37228 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5712.2.a.bd 2
4.b odd 2 1 714.2.a.j 2
12.b even 2 1 2142.2.a.z 2
28.d even 2 1 4998.2.a.bu 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
714.2.a.j 2 4.b odd 2 1
2142.2.a.z 2 12.b even 2 1
4998.2.a.bu 2 28.d even 2 1
5712.2.a.bd 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\):

\( T_{5}^{2} + 3T_{5} - 6 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} - 6 \) Copy content Toggle raw display
\( T_{13}^{2} - T_{13} - 8 \) Copy content Toggle raw display
\( T_{19} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T - 6 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 3T - 6 \) Copy content Toggle raw display
$13$ \( T^{2} - T - 8 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 6T - 24 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T - 24 \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 7T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 6T - 24 \) Copy content Toggle raw display
$43$ \( T^{2} + 7T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 3T - 6 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 24 \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + T - 8 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 7T - 62 \) Copy content Toggle raw display
$79$ \( T^{2} + 7T + 4 \) Copy content Toggle raw display
$83$ \( T^{2} - 15T - 18 \) Copy content Toggle raw display
$89$ \( T^{2} - 9T - 54 \) Copy content Toggle raw display
$97$ \( T^{2} + 17T - 2 \) Copy content Toggle raw display
show more
show less