Defining parameters
Level: | \( N \) | \(=\) | \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5712.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 54 \) | ||
Sturm bound: | \(2304\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5712))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1176 | 96 | 1080 |
Cusp forms | 1129 | 96 | 1033 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(62\) | \(7\) | \(55\) | \(60\) | \(7\) | \(53\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(83\) | \(5\) | \(78\) | \(80\) | \(5\) | \(75\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(81\) | \(8\) | \(73\) | \(78\) | \(8\) | \(70\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(68\) | \(4\) | \(64\) | \(65\) | \(4\) | \(61\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(66\) | \(5\) | \(61\) | \(63\) | \(5\) | \(58\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(83\) | \(7\) | \(76\) | \(80\) | \(7\) | \(73\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(77\) | \(4\) | \(73\) | \(74\) | \(4\) | \(70\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(68\) | \(8\) | \(60\) | \(65\) | \(8\) | \(57\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(75\) | \(7\) | \(68\) | \(72\) | \(7\) | \(65\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(74\) | \(6\) | \(68\) | \(71\) | \(6\) | \(65\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(76\) | \(5\) | \(71\) | \(73\) | \(5\) | \(68\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(69\) | \(6\) | \(63\) | \(66\) | \(6\) | \(60\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(71\) | \(6\) | \(65\) | \(68\) | \(6\) | \(62\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(74\) | \(7\) | \(67\) | \(71\) | \(7\) | \(64\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(80\) | \(6\) | \(74\) | \(77\) | \(6\) | \(71\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(69\) | \(5\) | \(64\) | \(66\) | \(5\) | \(61\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(580\) | \(44\) | \(536\) | \(557\) | \(44\) | \(513\) | \(23\) | \(0\) | \(23\) | ||||||
Minus space | \(-\) | \(596\) | \(52\) | \(544\) | \(572\) | \(52\) | \(520\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5712))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5712)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(816))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(952))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1428))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1904))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2856))\)\(^{\oplus 2}\)