Properties

Label 2-5616-1.1-c1-0-93
Degree $2$
Conductor $5616$
Sign $-1$
Analytic cond. $44.8439$
Root an. cond. $6.69656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s + 3·11-s − 13-s + 2·17-s − 6·19-s − 7·23-s − 5·25-s − 9·29-s + 31-s − 5·37-s + 6·41-s − 7·43-s − 4·47-s + 2·49-s + 5·53-s − 3·59-s − 6·61-s − 12·67-s − 14·71-s − 6·73-s + 9·77-s − 14·79-s − 9·83-s + 13·89-s − 3·91-s + 2·97-s + 15·101-s + ⋯
L(s)  = 1  + 1.13·7-s + 0.904·11-s − 0.277·13-s + 0.485·17-s − 1.37·19-s − 1.45·23-s − 25-s − 1.67·29-s + 0.179·31-s − 0.821·37-s + 0.937·41-s − 1.06·43-s − 0.583·47-s + 2/7·49-s + 0.686·53-s − 0.390·59-s − 0.768·61-s − 1.46·67-s − 1.66·71-s − 0.702·73-s + 1.02·77-s − 1.57·79-s − 0.987·83-s + 1.37·89-s − 0.314·91-s + 0.203·97-s + 1.49·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5616\)    =    \(2^{4} \cdot 3^{3} \cdot 13\)
Sign: $-1$
Analytic conductor: \(44.8439\)
Root analytic conductor: \(6.69656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69229153628130630276751719546, −7.30821050768429622800522224567, −6.13003277986382822899782110235, −5.82200140244176234116239876050, −4.69523450338354479161851347756, −4.20028411602060003152898034325, −3.39188907659271894974302027392, −2.00818398982693796708435149461, −1.63341610205138870490692051440, 0, 1.63341610205138870490692051440, 2.00818398982693796708435149461, 3.39188907659271894974302027392, 4.20028411602060003152898034325, 4.69523450338354479161851347756, 5.82200140244176234116239876050, 6.13003277986382822899782110235, 7.30821050768429622800522224567, 7.69229153628130630276751719546

Graph of the $Z$-function along the critical line