L(s) = 1 | + 2·2-s + 3·4-s − 3·5-s + 7-s + 4·8-s − 6·10-s + 3·11-s − 5·13-s + 2·14-s + 5·16-s + 3·17-s + 7·19-s − 9·20-s + 6·22-s + 5·25-s − 10·26-s + 3·28-s − 12·29-s − 4·31-s + 6·32-s + 6·34-s − 3·35-s + 7·37-s + 14·38-s − 12·40-s + 3·41-s − 5·43-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s − 1.34·5-s + 0.377·7-s + 1.41·8-s − 1.89·10-s + 0.904·11-s − 1.38·13-s + 0.534·14-s + 5/4·16-s + 0.727·17-s + 1.60·19-s − 2.01·20-s + 1.27·22-s + 25-s − 1.96·26-s + 0.566·28-s − 2.22·29-s − 0.718·31-s + 1.06·32-s + 1.02·34-s − 0.507·35-s + 1.15·37-s + 2.27·38-s − 1.89·40-s + 0.468·41-s − 0.762·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.805439512\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.805439512\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22275943386260477331696097932, −10.79993670702986353973431177711, −10.30030455167212410108549701495, −9.645577726413583026226755782301, −9.268378053049533752810937914799, −8.865049762419181923665004600083, −7.998721917769142684388514085320, −7.53534120707006903524393337716, −7.30508308588942493336678610469, −7.27294586570844070070191643806, −6.34870032885874448028992261736, −5.60778260663906808050098259181, −5.49015616129293459542646032424, −4.87603865224511495515451097049, −4.12113625375092048794348631041, −4.01838039073801222850824626673, −3.40897137906598837640320817197, −2.78245278083099687735775899975, −2.03662367753396185886817406214, −0.949734282541615877198605666525,
0.949734282541615877198605666525, 2.03662367753396185886817406214, 2.78245278083099687735775899975, 3.40897137906598837640320817197, 4.01838039073801222850824626673, 4.12113625375092048794348631041, 4.87603865224511495515451097049, 5.49015616129293459542646032424, 5.60778260663906808050098259181, 6.34870032885874448028992261736, 7.27294586570844070070191643806, 7.30508308588942493336678610469, 7.53534120707006903524393337716, 7.998721917769142684388514085320, 8.865049762419181923665004600083, 9.268378053049533752810937914799, 9.645577726413583026226755782301, 10.30030455167212410108549701495, 10.79993670702986353973431177711, 11.22275943386260477331696097932