L(s) = 1 | − 2·2-s + 3·4-s − 2·5-s − 7-s − 4·8-s + 4·10-s + 3·11-s + 4·13-s + 2·14-s + 5·16-s + 8·19-s − 6·20-s − 6·22-s + 4·23-s + 5·25-s − 8·26-s − 3·28-s + 18·29-s − 7·31-s − 6·32-s + 2·35-s + 2·37-s − 16·38-s + 8·40-s + 2·41-s + 9·44-s − 8·46-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 0.894·5-s − 0.377·7-s − 1.41·8-s + 1.26·10-s + 0.904·11-s + 1.10·13-s + 0.534·14-s + 5/4·16-s + 1.83·19-s − 1.34·20-s − 1.27·22-s + 0.834·23-s + 25-s − 1.56·26-s − 0.566·28-s + 3.34·29-s − 1.25·31-s − 1.06·32-s + 0.338·35-s + 0.328·37-s − 2.59·38-s + 1.26·40-s + 0.312·41-s + 1.35·44-s − 1.17·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.015147887\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.015147887\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74515051636514415587841598648, −10.55865111689719398676216737349, −10.20311498756124147961819501190, −9.466583105984742720365857735756, −9.135208178035983247041089573027, −8.946933576488088702254070736163, −8.259272003837856540113380774971, −8.143975239809663093280589616021, −7.34028183393403457838721613992, −7.18832553870333911869282176341, −6.45204493554862644475949901846, −6.44348412339406311741752888559, −5.49568356755595257404456565253, −5.06113903664733917129621822295, −4.11861701144546747821863020192, −3.69854973497502664321079861795, −3.03218867731255770971698441239, −2.55638730761401973659049897892, −1.08179301237228245172226052496, −1.01108969557264737248074254455,
1.01108969557264737248074254455, 1.08179301237228245172226052496, 2.55638730761401973659049897892, 3.03218867731255770971698441239, 3.69854973497502664321079861795, 4.11861701144546747821863020192, 5.06113903664733917129621822295, 5.49568356755595257404456565253, 6.44348412339406311741752888559, 6.45204493554862644475949901846, 7.18832553870333911869282176341, 7.34028183393403457838721613992, 8.143975239809663093280589616021, 8.259272003837856540113380774971, 8.946933576488088702254070736163, 9.135208178035983247041089573027, 9.466583105984742720365857735756, 10.20311498756124147961819501190, 10.55865111689719398676216737349, 10.74515051636514415587841598648