Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 38 x^{2} - 913 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.0396422182658$, $\pm0.627024448401$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-211})\) |
Galois group: | $C_2^2$ |
Jacobians: | $57$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6004$ | $47143408$ | $325333344400$ | $2251734545155264$ | $15516090102366802204$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $73$ | $6845$ | $568972$ | $47446569$ | $3939053063$ | $326938695590$ | $27136040731061$ | $2252292275355409$ | $186940254515378356$ | $15516041179482003725$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 57 curves (of which all are hyperelliptic):
- $y^2=17 x^6+16 x^5+24 x^4+8 x^3+74 x^2+37 x+58$
- $y^2=66 x^6+79 x^5+38 x^4+43 x^3+8 x^2+16 x+35$
- $y^2=78 x^6+41 x^5+48 x^4+20 x^3+29 x^2+48 x+68$
- $y^2=72 x^6+5 x^5+58 x^4+73 x^3+6 x^2+15 x+70$
- $y^2=14 x^6+25 x^5+39 x^4+49 x^3+40 x^2+76 x+62$
- $y^2=13 x^6+78 x^5+68 x^4+57 x^3+53 x^2+25 x+15$
- $y^2=66 x^6+67 x^5+72 x^4+x^3+75 x^2+35 x+34$
- $y^2=24 x^6+71 x^5+52 x^4+55 x^3+57 x^2+45 x+76$
- $y^2=60 x^6+6 x^5+47 x^4+73 x^3+29 x^2+5 x+55$
- $y^2=73 x^6+82 x^5+67 x^4+64 x^3+30 x^2+2 x+15$
- $y^2=82 x^6+40 x^5+9 x^4+32 x^3+23 x^2+69 x+26$
- $y^2=19 x^6+35 x^5+47 x^4+2 x^3+81 x^2+69 x+5$
- $y^2=59 x^6+23 x^5+64 x^4+62 x^3+52 x^2+79 x+67$
- $y^2=32 x^6+28 x^5+68 x^4+34 x^3+33 x^2+11 x+5$
- $y^2=55 x^6+51 x^5+38 x^4+27 x^3+44 x^2+64 x+61$
- $y^2=60 x^6+8 x^5+54 x^3+5 x^2+46 x+67$
- $y^2=50 x^5+25 x^4+70 x^3+81 x^2+49 x+79$
- $y^2=27 x^6+46 x^5+47 x^4+71 x^3+5 x^2+2 x+27$
- $y^2=76 x^6+32 x^5+26 x^4+74 x^3+3 x^2+76 x+68$
- $y^2=82 x^6+4 x^5+5 x^4+73 x^3+78 x^2+19 x+1$
- and 37 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{3}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-211})\). |
The base change of $A$ to $\F_{83^{3}}$ is 1.571787.acce 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$ |
Base change
This is a primitive isogeny class.