# Stored data for abelian variety isogeny class 2.83.al_bm, downloaded from the LMFDB on 20 September 2025. {"abvar_count": 6004, "abvar_counts": [6004, 47143408, 325333344400, 2251734545155264, 15516090102366802204, 106889459205999108870400, 736364984934717395692359916, 5072820396289751063210535039744, 34946658898883802650464866189984400, 240747534003224859742635592267469116528], "abvar_counts_str": "6004 47143408 325333344400 2251734545155264 15516090102366802204 106889459205999108870400 736364984934717395692359916 5072820396289751063210535039744 34946658898883802650464866189984400 240747534003224859742635592267469116528 ", "angle_corank": 1, "angle_rank": 1, "angles": [0.0396422182657847, 0.627024448400882], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 73, "curve_counts": [73, 6845, 568972, 47446569, 3939053063, 326938695590, 27136040731061, 2252292275355409, 186940254515378356, 15516041179482003725], "curve_counts_str": "73 6845 568972 47446569 3939053063 326938695590 27136040731061 2252292275355409 186940254515378356 15516041179482003725 ", "curves": ["y^2=17*x^6+16*x^5+24*x^4+8*x^3+74*x^2+37*x+58", "y^2=66*x^6+79*x^5+38*x^4+43*x^3+8*x^2+16*x+35", "y^2=78*x^6+41*x^5+48*x^4+20*x^3+29*x^2+48*x+68", "y^2=72*x^6+5*x^5+58*x^4+73*x^3+6*x^2+15*x+70", "y^2=14*x^6+25*x^5+39*x^4+49*x^3+40*x^2+76*x+62", "y^2=13*x^6+78*x^5+68*x^4+57*x^3+53*x^2+25*x+15", "y^2=66*x^6+67*x^5+72*x^4+x^3+75*x^2+35*x+34", "y^2=24*x^6+71*x^5+52*x^4+55*x^3+57*x^2+45*x+76", "y^2=60*x^6+6*x^5+47*x^4+73*x^3+29*x^2+5*x+55", "y^2=73*x^6+82*x^5+67*x^4+64*x^3+30*x^2+2*x+15", "y^2=82*x^6+40*x^5+9*x^4+32*x^3+23*x^2+69*x+26", "y^2=19*x^6+35*x^5+47*x^4+2*x^3+81*x^2+69*x+5", "y^2=59*x^6+23*x^5+64*x^4+62*x^3+52*x^2+79*x+67", "y^2=32*x^6+28*x^5+68*x^4+34*x^3+33*x^2+11*x+5", "y^2=55*x^6+51*x^5+38*x^4+27*x^3+44*x^2+64*x+61", "y^2=60*x^6+8*x^5+54*x^3+5*x^2+46*x+67", "y^2=50*x^5+25*x^4+70*x^3+81*x^2+49*x+79", "y^2=27*x^6+46*x^5+47*x^4+71*x^3+5*x^2+2*x+27", "y^2=76*x^6+32*x^5+26*x^4+74*x^3+3*x^2+76*x+68", "y^2=82*x^6+4*x^5+5*x^4+73*x^3+78*x^2+19*x+1", "y^2=74*x^6+13*x^5+81*x^4+68*x^3+3*x^2+9*x+19", "y^2=56*x^6+49*x^5+48*x^4+44*x^3+21*x^2+23*x+22", "y^2=23*x^6+7*x^5+33*x^4+16*x^3+63*x^2+74*x+4", "y^2=15*x^6+16*x^5+14*x^4+11*x^3+22*x^2+55*x+66", "y^2=20*x^6+79*x^5+8*x^4+40*x^3+29*x^2+16*x+60", "y^2=81*x^6+66*x^5+57*x^4+64*x^3+72*x^2+27*x+5", "y^2=41*x^6+14*x^5+79*x^4+58*x^3+17*x^2+59*x+45", "y^2=44*x^6+3*x^5+47*x^4+44*x^3+71*x^2+34*x+60", "y^2=80*x^6+57*x^5+26*x^4+5*x^3+9*x^2+13*x+15", "y^2=49*x^6+70*x^5+68*x^4+72*x^3+40*x^2+11*x+36", "y^2=17*x^6+69*x^5+7*x^4+51*x^3+69*x^2+13*x+79", "y^2=42*x^6+19*x^5+14*x^4+33*x^3+41*x^2+53*x+7", "y^2=70*x^6+25*x^5+66*x^4+45*x^3+45*x^2+28*x+74", "y^2=11*x^6+64*x^5+79*x^4+72*x^3+43*x^2+60*x+1", "y^2=79*x^6+41*x^5+50*x^4+52*x^3+65*x^2+57*x+1", "y^2=34*x^6+46*x^5+78*x^4+36*x^3+35*x^2+61*x+42", "y^2=56*x^6+2*x^5+58*x^4+12*x^3+31*x^2+71*x+38", "y^2=6*x^6+66*x^5+76*x^4+65*x^3+56*x^2+57*x+8", "y^2=32*x^6+24*x^5+64*x^4+63*x^3+27*x^2+69*x+23", "y^2=75*x^6+80*x^5+70*x^4+6*x^3+25*x^2+43*x+7", "y^2=54*x^6+10*x^5+62*x^4+21*x^3+5*x^2+20*x+33", "y^2=76*x^6+54*x^5+14*x^4+51*x^3+14*x^2+72*x+47", "y^2=63*x^6+33*x^5+55*x^4+37*x^3+17*x^2+29*x+80", "y^2=3*x^6+37*x^5+66*x^4+48*x^3+58*x^2+3*x+11", "y^2=47*x^6+69*x^5+26*x^4+35*x^3+29*x^2+8*x+5", "y^2=71*x^6+35*x^5+61*x^4+33*x^3+13*x^2+66*x+74", "y^2=67*x^6+16*x^5+64*x^4+65*x^3+19*x^2+75*x+67", "y^2=66*x^6+71*x^5+12*x^4+46*x^3+54*x^2+69*x+54", "y^2=15*x^6+74*x^5+31*x^4+2*x^3+54*x^2+69*x+65", "y^2=55*x^6+51*x^5+55*x^4+58*x^3+76*x^2+49*x+76", "y^2=29*x^6+2*x^5+80*x^4+4*x^3+28*x^2+24*x+29", "y^2=62*x^6+55*x^5+6*x^4+28*x^3+39*x^2+59*x+45", "y^2=12*x^6+32*x^5+48*x^4+69*x^3+69*x^2+66*x+22", "y^2=18*x^6+13*x^5+49*x^4+46*x^3+57*x^2+54*x+55", "y^2=58*x^6+35*x^5+49*x^4+49*x^3+61*x^2+55*x+12", "y^2=70*x^6+64*x^5+23*x^4+27*x^3+43*x^2+60*x+25", "y^2=71*x^6+34*x^5+8*x^4+4*x^3+69*x^2+81*x+79"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 4, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 3, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.211.1"], "geometric_splitting_field": "2.0.211.1", "geometric_splitting_polynomials": [[53, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 57, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 57, "label": "2.83.al_bm", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.400689.1"], "p": 83, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, -11, 38, -913, 6889], "poly_str": "1 -11 38 -913 6889 ", "primitive_models": [], "q": 83, "real_poly": [1, -11, -128], "simple_distinct": ["2.83.al_bm"], "simple_factors": ["2.83.al_bmA"], "simple_multiplicities": [1], "singular_primes": ["2,-V+5", "19,-30*F-50*V+557"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.400689.1", "splitting_polynomials": [[2809, -53, -52, -1, 1]], "twist_count": 6, "twists": [["2.83.l_bm", "2.6889.abt_ahfc", 2], ["2.83.w_lb", "2.571787.aeei_gvwig", 3], ["2.83.aw_lb", "2.326940373369.adrlya_gnauhyqdy", 6], ["2.83.a_bt", "2.326940373369.adrlya_gnauhyqdy", 6], ["2.83.a_abt", "2.106890007738661124410161.amkuggxse_eyyljeyehafmswpcg", 12]], "weak_equivalence_count": 4, "zfv_index": 38, "zfv_index_factorization": [[2, 1], [19, 1]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 1444, "zfv_singular_count": 4, "zfv_singular_primes": ["2,-V+5", "19,-30*F-50*V+557"]}