Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + x - 52 x^{2} + 53 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.188545502792$, $\pm0.855212169458$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-211})\) |
Galois group: | $C_2^2$ |
Jacobians: | $39$ |
Isomorphism classes: | 69 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2812$ | $7603648$ | $22211729296$ | $62302375592704$ | $174893233289336332$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $55$ | $2705$ | $149194$ | $7895889$ | $418209275$ | $22164906710$ | $1174710136655$ | $62259703866049$ | $3299763458555362$ | $174887469719038025$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 39 curves (of which all are hyperelliptic):
- $y^2=8 x^6+52 x^5+42 x^4+34 x^3+12 x^2+6 x+15$
- $y^2=18 x^6+47 x^5+3 x^4+50 x^3+13 x^2+18 x+30$
- $y^2=x^6+27 x^5+18 x^4+20 x^3+24 x^2+26 x+23$
- $y^2=42 x^6+9 x^5+14 x^4+42 x^3+37 x^2+7 x+27$
- $y^2=30 x^6+8 x^5+7 x^4+43 x^3+50 x^2+40 x+16$
- $y^2=43 x^6+33 x^5+42 x^4+5 x^3+43 x^2+5 x+29$
- $y^2=x^6+46 x^5+48 x^4+16 x^3+12 x^2+44 x+3$
- $y^2=4 x^6+42 x^5+9 x^4+41 x^3+3 x^2+12 x+21$
- $y^2=36 x^6+19 x^5+17 x^4+44 x^3+47 x^2+23 x$
- $y^2=42 x^6+43 x^5+14 x^4+4 x^3+15 x^2+x+40$
- $y^2=29 x^6+7 x^5+41 x^4+35 x^3+9 x^2+15 x+2$
- $y^2=50 x^6+17 x^5+42 x^4+46 x^3+40 x^2+37 x+21$
- $y^2=10 x^6+49 x^5+4 x^4+9 x^3+23 x^2+35 x$
- $y^2=32 x^6+3 x^5+11 x^4+51 x^3+43 x^2+23 x+2$
- $y^2=19 x^6+13 x^5+37 x^4+7 x^3+40 x^2+10 x+25$
- $y^2=12 x^6+26 x^5+38 x^4+15 x^3+3 x^2+36 x$
- $y^2=36 x^6+24 x^5+47 x^4+24 x^3+37 x^2+20 x+9$
- $y^2=31 x^6+39 x^5+7 x^4+13 x^3+39 x+14$
- $y^2=23 x^6+12 x^5+18 x^4+19 x^3+30 x^2+17 x+37$
- $y^2=4 x^6+21 x^5+44 x^4+44 x^3+39 x^2+31 x+38$
- and 19 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{3}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-211})\). |
The base change of $A$ to $\F_{53^{3}}$ is 1.148877.gc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$ |
Base change
This is a primitive isogeny class.