Properties

Label 2-5400-1.1-c1-0-7
Degree $2$
Conductor $5400$
Sign $1$
Analytic cond. $43.1192$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 6·11-s − 6·13-s + 2·17-s + 7·19-s + 8·23-s − 6·29-s − 9·31-s − 3·37-s + 10·41-s + 43-s − 2·47-s − 6·49-s + 2·53-s − 12·59-s + 3·61-s + 4·67-s + 12·71-s + 11·73-s + 6·77-s − 11·79-s − 6·83-s + 8·89-s + 6·91-s + 7·97-s + 10·101-s + 5·103-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.80·11-s − 1.66·13-s + 0.485·17-s + 1.60·19-s + 1.66·23-s − 1.11·29-s − 1.61·31-s − 0.493·37-s + 1.56·41-s + 0.152·43-s − 0.291·47-s − 6/7·49-s + 0.274·53-s − 1.56·59-s + 0.384·61-s + 0.488·67-s + 1.42·71-s + 1.28·73-s + 0.683·77-s − 1.23·79-s − 0.658·83-s + 0.847·89-s + 0.628·91-s + 0.710·97-s + 0.995·101-s + 0.492·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5400\)    =    \(2^{3} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(43.1192\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.175512734\)
\(L(\frac12)\) \(\approx\) \(1.175512734\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86629617934848154041526001183, −7.46163064092310664936259227453, −7.08091028962897187246030565199, −5.77606585155551996573611189930, −5.21759031220592452264692876120, −4.82497811403578669610578189296, −3.42780671686453598388488886254, −2.90328879407899015649372124329, −2.04021077346179182401979224597, −0.55451079281509536544611972434, 0.55451079281509536544611972434, 2.04021077346179182401979224597, 2.90328879407899015649372124329, 3.42780671686453598388488886254, 4.82497811403578669610578189296, 5.21759031220592452264692876120, 5.77606585155551996573611189930, 7.08091028962897187246030565199, 7.46163064092310664936259227453, 7.86629617934848154041526001183

Graph of the $Z$-function along the critical line