| L(s) = 1 | − 2·2-s + 3·4-s + 3·5-s + 7-s − 4·8-s − 6·10-s + 3·11-s + 13-s − 2·14-s + 5·16-s − 5·19-s + 9·20-s − 6·22-s + 6·23-s + 5·25-s − 2·26-s + 3·28-s − 3·29-s − 2·31-s − 6·32-s + 3·35-s − 17·37-s + 10·38-s − 12·40-s + 12·41-s − 5·43-s + 9·44-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 3/2·4-s + 1.34·5-s + 0.377·7-s − 1.41·8-s − 1.89·10-s + 0.904·11-s + 0.277·13-s − 0.534·14-s + 5/4·16-s − 1.14·19-s + 2.01·20-s − 1.27·22-s + 1.25·23-s + 25-s − 0.392·26-s + 0.566·28-s − 0.557·29-s − 0.359·31-s − 1.06·32-s + 0.507·35-s − 2.79·37-s + 1.62·38-s − 1.89·40-s + 1.87·41-s − 0.762·43-s + 1.35·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27060804 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.703257529\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.703257529\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.479853687771473896107488536321, −8.119065304785937716646001750003, −7.58400974578860888797903429393, −7.54655986724861487155907964612, −6.88602914109978761663627481993, −6.63750653665519392235415799516, −6.32560740079250889416913019117, −6.11927485014781324036501579754, −5.57707999541350759857834984871, −5.29637364683663610702982839269, −4.62795872382505905211505534239, −4.58629676217285924801429806014, −3.68384452879537065439259722649, −3.36596043182056447070147539617, −2.97896215943565841328410406391, −2.30244625202438665258377426555, −1.78359987574314078667668422644, −1.76357595907527198673602731125, −1.16945884042255214019079839356, −0.44836337438480035187298429336,
0.44836337438480035187298429336, 1.16945884042255214019079839356, 1.76357595907527198673602731125, 1.78359987574314078667668422644, 2.30244625202438665258377426555, 2.97896215943565841328410406391, 3.36596043182056447070147539617, 3.68384452879537065439259722649, 4.58629676217285924801429806014, 4.62795872382505905211505534239, 5.29637364683663610702982839269, 5.57707999541350759857834984871, 6.11927485014781324036501579754, 6.32560740079250889416913019117, 6.63750653665519392235415799516, 6.88602914109978761663627481993, 7.54655986724861487155907964612, 7.58400974578860888797903429393, 8.119065304785937716646001750003, 8.479853687771473896107488536321