Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 21 x + 220 x^{2} + 1239 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.665389865024$, $\pm0.836179434257$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.11072952.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $36$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4962$ | $12117204$ | $41999777208$ | $146911016986272$ | $511104307366637022$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $81$ | $3481$ | $204498$ | $12124009$ | $714906891$ | $42180533170$ | $2488650159321$ | $146830463975185$ | $8662995617662134$ | $511116753363836761$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=22 x^6+45 x^5+50 x^4+4 x^3+22 x^2+52 x+28$
- $y^2=45 x^6+12 x^5+27 x^4+29 x^3+25 x^2+35 x+39$
- $y^2=45 x^6+43 x^5+25 x^4+50 x^3+39 x^2+33 x+57$
- $y^2=49 x^6+42 x^5+20 x^4+36 x^3+16 x^2+34 x+7$
- $y^2=4 x^6+38 x^5+52 x^4+30 x^3+25 x^2+7 x+35$
- $y^2=9 x^6+44 x^5+36 x^4+46 x^3+52 x^2+18 x+40$
- $y^2=4 x^6+49 x^5+36 x^4+49 x^3+16 x^2+26 x+10$
- $y^2=44 x^6+43 x^5+48 x^4+5 x^3+17 x^2+22 x+13$
- $y^2=26 x^6+14 x^5+43 x^4+53 x^3+27 x^2+16 x+7$
- $y^2=27 x^6+12 x^5+30 x^4+4 x^3+23 x^2+14 x+28$
- $y^2=20 x^6+11 x^5+31 x^4+27 x^3+9 x^2+23 x+2$
- $y^2=26 x^6+18 x^5+35 x^4+9 x^3+26 x^2+16 x+33$
- $y^2=7 x^6+49 x^5+20 x^3+32 x^2+32 x+54$
- $y^2=51 x^6+39 x^5+41 x^4+35 x^3+58 x^2+7 x+36$
- $y^2=39 x^6+50 x^5+14 x^4+31 x^3+31 x^2+9 x+30$
- $y^2=18 x^6+19 x^5+28 x^4+x^3+15 x^2+2 x+41$
- $y^2=10 x^6+22 x^5+26 x^4+42 x^3+50 x^2+9 x+25$
- $y^2=50 x^6+9 x^5+41 x^4+37 x^3+45 x^2+3 x+19$
- $y^2=32 x^6+43 x^5+24 x^4+6 x^3+36 x^2+15 x+58$
- $y^2=52 x^6+33 x^5+24 x^4+26 x^3+27 x^2+4 x+18$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.11072952.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.av_im | $2$ | (not in LMFDB) |