Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 13 x + 126 x^{2} - 1027 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.176366695133$, $\pm0.537995068290$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.824373.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $272$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5328$ | $39469824$ | $242908911936$ | $1516969480117248$ | $9468786077323779888$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $67$ | $6325$ | $492676$ | $38946505$ | $3077222137$ | $243089168974$ | $19203908976319$ | $1517108786419633$ | $119851596403878796$ | $9468276080358825805$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 272 curves (of which all are hyperelliptic):
- $y^2=14 x^6+32 x^5+26 x^4+6 x^3+19 x^2+49 x+35$
- $y^2=25 x^5+71 x^4+75 x^3+7 x^2+66 x+3$
- $y^2=61 x^6+8 x^5+12 x^4+4 x^3+17 x^2+37 x+22$
- $y^2=62 x^6+23 x^5+4 x^4+59 x^3+18 x^2+58 x+64$
- $y^2=59 x^6+60 x^5+56 x^4+66 x^3+28 x^2+27 x$
- $y^2=67 x^6+45 x^5+30 x^4+40 x^3+59 x^2+28 x+78$
- $y^2=12 x^6+58 x^5+16 x^4+66 x^3+67 x^2+55 x+1$
- $y^2=24 x^6+52 x^5+62 x^4+68 x^3+63 x^2+72 x+33$
- $y^2=61 x^6+6 x^5+13 x^4+19 x^3+66 x^2+60 x+50$
- $y^2=19 x^6+52 x^5+72 x^4+71 x^3+9 x^2+67 x+6$
- $y^2=48 x^6+2 x^5+49 x^4+71 x^3+44 x^2+33 x+64$
- $y^2=74 x^6+18 x^5+53 x^4+24 x^3+26 x^2+40 x+42$
- $y^2=78 x^6+48 x^5+27 x^4+17 x^3+47 x^2+17 x$
- $y^2=65 x^6+57 x^5+23 x^4+6 x^3+61 x^2+17 x+39$
- $y^2=34 x^6+35 x^5+78 x^4+31 x^3+58 x^2+40$
- $y^2=12 x^6+27 x^5+78 x^4+46 x^3+68 x^2+47 x+68$
- $y^2=54 x^6+18 x^5+7 x^4+28 x^3+50 x^2+13 x+48$
- $y^2=14 x^6+26 x^5+17 x^4+18 x^3+12 x^2+32 x+1$
- $y^2=72 x^6+29 x^5+74 x^4+26 x^3+61 x^2+20 x+12$
- $y^2=x^6+7 x^5+42 x^4+16 x^3+24 x^2+77 x+68$
- and 252 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.824373.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.n_ew | $2$ | (not in LMFDB) |