Invariants
| Base field: | $\F_{53}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 + 9 x + 118 x^{2} + 477 x^{3} + 2809 x^{4}$ | 
| Frobenius angles: | $\pm0.535659094934$, $\pm0.668998358403$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.35941356.1 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $64$ | 
| Isomorphism classes: | 64 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3414$ | $8336988$ | $22012106400$ | $62243018665344$ | $174904562849439054$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $63$ | $2965$ | $147852$ | $7888369$ | $418236363$ | $22164296650$ | $1174710787551$ | $62259687631489$ | $3299763574346796$ | $174887471199801325$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=27 x^6+7 x^5+26 x^4+49 x^3+20 x^2+8 x+42$
 - $y^2=37 x^6+6 x^5+10 x^4+16 x^3+45 x^2+51 x+18$
 - $y^2=38 x^6+31 x^5+26 x^4+30 x^3+16 x^2+36 x+28$
 - $y^2=18 x^6+5 x^5+16 x^4+19 x^3+34 x^2+12 x+12$
 - $y^2=33 x^6+6 x^5+27 x^4+11 x^3+50 x^2+23 x+11$
 - $y^2=17 x^6+8 x^5+17 x^4+50 x^3+34 x^2+12 x+12$
 - $y^2=41 x^6+37 x^5+47 x^4+15 x^3+20 x^2+49 x+48$
 - $y^2=5 x^6+7 x^5+41 x^3+43 x^2+48 x+40$
 - $y^2=44 x^6+17 x^5+27 x^4+41 x^3+47 x^2+40 x+11$
 - $y^2=24 x^6+36 x^5+30 x^4+11 x^3+16 x^2+12 x+49$
 - $y^2=22 x^6+42 x^5+3 x^4+40 x^3+26 x^2+29 x+33$
 - $y^2=13 x^6+13 x^5+11 x^4+10 x^3+36 x^2+17 x+5$
 - $y^2=25 x^6+35 x^5+7 x^4+31 x^3+6 x^2+32 x+37$
 - $y^2=15 x^6+40 x^5+28 x^4+6 x^3+41 x^2+44 x+38$
 - $y^2=x^6+9 x^5+52 x^4+22 x^3+43 x^2+30 x+46$
 - $y^2=37 x^6+35 x^5+x^4+43 x^3+42 x^2+24 x+8$
 - $y^2=35 x^6+x^5+23 x^4+13 x^3+28 x^2+47 x+24$
 - $y^2=12 x^6+35 x^5+31 x^4+4 x^3+24 x^2+23 x+37$
 - $y^2=32 x^6+17 x^5+18 x^4+45 x^3+43 x^2+32 x+28$
 - $y^2=49 x^6+x^5+37 x^4+5 x^3+3 x^2+7 x+34$
 - and 44 more
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.35941356.1. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.53.aj_eo | $2$ | (not in LMFDB) |