Properties

Label 2.83.g_fm
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 + 6 x + 142 x^{2} + 498 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.451870613370$, $\pm0.659334399126$
Angle rank:  $2$ (numerical)
Number field:  4.0.22572792.1
Galois group:  $D_{4}$
Jacobians:  $384$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7536$ $49195008$ $326456784432$ $2252027823980544$ $15515996779895171376$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $7138$ $570942$ $47452750$ $3939029370$ $326939945074$ $27136063763262$ $2252292260315230$ $186940253575585242$ $15516041189945827138$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.22572792.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.ag_fm$2$(not in LMFDB)