Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x + 142 x^{2} + 498 x^{3} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.451870613370$, $\pm0.659334399126$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.22572792.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $384$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7536$ | $49195008$ | $326456784432$ | $2252027823980544$ | $15515996779895171376$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $90$ | $7138$ | $570942$ | $47452750$ | $3939029370$ | $326939945074$ | $27136063763262$ | $2252292260315230$ | $186940253575585242$ | $15516041189945827138$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):
- $y^2=5 x^6+78 x^5+32 x^4+34 x^3+41 x^2+4 x+59$
- $y^2=51 x^6+67 x^5+42 x^4+48 x^3+5 x^2+63 x+7$
- $y^2=45 x^5+53 x^4+82 x^3+48 x^2+50 x+42$
- $y^2=10 x^6+7 x^5+38 x^4+21 x^3+32 x^2+40 x+7$
- $y^2=48 x^6+16 x^5+26 x^4+24 x^3+42 x^2+27 x+57$
- $y^2=41 x^6+68 x^5+28 x^4+28 x^3+54 x^2+9 x+9$
- $y^2=65 x^6+60 x^5+34 x^4+71 x^3+32 x^2+31 x+39$
- $y^2=17 x^6+17 x^5+30 x^4+77 x^3+67 x^2+73 x+80$
- $y^2=76 x^6+x^5+38 x^4+72 x^3+13 x^2+78 x+5$
- $y^2=11 x^6+35 x^5+66 x^4+71 x^3+70 x^2+46 x+1$
- $y^2=15 x^6+71 x^5+73 x^4+48 x^3+56 x^2+19 x+33$
- $y^2=60 x^6+78 x^5+61 x^4+72 x^3+16 x^2+16 x+50$
- $y^2=55 x^6+50 x^5+6 x^4+21 x^3+49 x^2+61 x+70$
- $y^2=6 x^6+76 x^5+5 x^4+61 x^3+4 x^2+15 x$
- $y^2=9 x^6+32 x^5+23 x^4+17 x^3+79 x^2+76 x+78$
- $y^2=46 x^6+9 x^4+62 x^3+53 x^2+27 x+78$
- $y^2=49 x^6+54 x^5+57 x^4+53 x^3+47 x^2+65 x+19$
- $y^2=38 x^6+10 x^5+20 x^4+72 x^3+79 x^2+18 x+48$
- $y^2=79 x^6+32 x^5+31 x^4+17 x^3+22 x^2+57 x+5$
- $y^2=24 x^6+46 x^5+43 x^4+11 x^3+33 x^2+67 x+28$
- and 364 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is 4.0.22572792.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.ag_fm | $2$ | (not in LMFDB) |