Properties

Label 2-5160-1.1-c1-0-31
Degree $2$
Conductor $5160$
Sign $1$
Analytic cond. $41.2028$
Root an. cond. $6.41894$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 4·7-s + 9-s + 6·13-s − 15-s − 6·17-s − 4·19-s + 4·21-s + 25-s + 27-s + 2·29-s + 8·31-s − 4·35-s + 10·37-s + 6·39-s − 6·41-s − 43-s − 45-s + 8·47-s + 9·49-s − 6·51-s − 6·53-s − 4·57-s + 10·61-s + 4·63-s − 6·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 1.66·13-s − 0.258·15-s − 1.45·17-s − 0.917·19-s + 0.872·21-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.676·35-s + 1.64·37-s + 0.960·39-s − 0.937·41-s − 0.152·43-s − 0.149·45-s + 1.16·47-s + 9/7·49-s − 0.840·51-s − 0.824·53-s − 0.529·57-s + 1.28·61-s + 0.503·63-s − 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5160\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(41.2028\)
Root analytic conductor: \(6.41894\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.967628104\)
\(L(\frac12)\) \(\approx\) \(2.967628104\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.246288014474196826100400289061, −7.83855523876803379069562185094, −6.72594004494620311418103246230, −6.24830337097746224100308819384, −5.10343711738289911010277999328, −4.32482291540337688561860237887, −3.97380219928213492559514621923, −2.74826149460038832905880342401, −1.90882766851294936397009934938, −0.967493005491661078618550928622, 0.967493005491661078618550928622, 1.90882766851294936397009934938, 2.74826149460038832905880342401, 3.97380219928213492559514621923, 4.32482291540337688561860237887, 5.10343711738289911010277999328, 6.24830337097746224100308819384, 6.72594004494620311418103246230, 7.83855523876803379069562185094, 8.246288014474196826100400289061

Graph of the $Z$-function along the critical line