| L(s) = 1 | − 2-s + 2·4-s + 2·5-s − 3·7-s − 5·8-s − 2·10-s + 3·11-s + 6·13-s + 3·14-s + 5·16-s + 3·17-s − 8·19-s + 4·20-s − 3·22-s + 8·23-s − 7·25-s − 6·26-s − 6·28-s + 10·29-s + 7·31-s − 10·32-s − 3·34-s − 6·35-s + 4·37-s + 8·38-s − 10·40-s + 2·41-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 4-s + 0.894·5-s − 1.13·7-s − 1.76·8-s − 0.632·10-s + 0.904·11-s + 1.66·13-s + 0.801·14-s + 5/4·16-s + 0.727·17-s − 1.83·19-s + 0.894·20-s − 0.639·22-s + 1.66·23-s − 7/5·25-s − 1.17·26-s − 1.13·28-s + 1.85·29-s + 1.25·31-s − 1.76·32-s − 0.514·34-s − 1.01·35-s + 0.657·37-s + 1.29·38-s − 1.58·40-s + 0.312·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 263169 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 263169 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.489056452\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.489056452\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22764068267892271213048943580, −10.53982779185925441555393422261, −9.977551879038831302476544619924, −9.914733318800735856680820690356, −9.422274484681160721014995885668, −8.849058922344088454146548866671, −8.443471412362247655743573755376, −8.396419621598843879061991890148, −7.45918675433093412309689321841, −6.59846699055009858271107852262, −6.58985942488832300076487238506, −6.13226787349324150529786119100, −6.06570041081805960450976585646, −5.17165467997458954996451952542, −4.33990420847873951360144415563, −3.47959918976036542031719361535, −3.24570181529285020852700786694, −2.50510013608551059842848175087, −1.75576313996937568804761698360, −0.837857107130942695788145712451,
0.837857107130942695788145712451, 1.75576313996937568804761698360, 2.50510013608551059842848175087, 3.24570181529285020852700786694, 3.47959918976036542031719361535, 4.33990420847873951360144415563, 5.17165467997458954996451952542, 6.06570041081805960450976585646, 6.13226787349324150529786119100, 6.58985942488832300076487238506, 6.59846699055009858271107852262, 7.45918675433093412309689321841, 8.396419621598843879061991890148, 8.443471412362247655743573755376, 8.849058922344088454146548866671, 9.422274484681160721014995885668, 9.914733318800735856680820690356, 9.977551879038831302476544619924, 10.53982779185925441555393422261, 11.22764068267892271213048943580