L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s − 2·5-s − 4·6-s − 4·8-s + 3·9-s + 4·10-s + 4·11-s + 6·12-s − 4·15-s + 5·16-s − 2·17-s − 6·18-s + 6·19-s − 6·20-s − 8·22-s + 6·23-s − 8·24-s − 5·25-s + 4·27-s − 8·29-s + 8·30-s + 12·31-s − 6·32-s + 8·33-s + 4·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s − 1.63·6-s − 1.41·8-s + 9-s + 1.26·10-s + 1.20·11-s + 1.73·12-s − 1.03·15-s + 5/4·16-s − 0.485·17-s − 1.41·18-s + 1.37·19-s − 1.34·20-s − 1.70·22-s + 1.25·23-s − 1.63·24-s − 25-s + 0.769·27-s − 1.48·29-s + 1.46·30-s + 2.15·31-s − 1.06·32-s + 1.39·33-s + 0.685·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24980004 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24980004 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.689330209\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.689330209\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.381599311768929476024755869488, −8.188088343202154938095708951230, −7.71107271752179426886195045573, −7.47587109513816898410067721729, −7.24327488072229659884759586446, −6.87393977302736831524588310125, −6.46907250804500963390678707509, −6.19236398308072811211386099558, −5.39570881412551241397881051398, −5.35208339480885541967817547688, −4.57161425307637155050470365437, −4.09571230635584524874588463518, −3.78412841667839640162890934921, −3.52598226732704934823301771248, −2.95127468007799322289695926065, −2.59306511475149919301252106104, −2.04160761143890824091897645982, −1.63769594147637879625314852097, −0.845846226692255186696990808460, −0.71415710724654164417893830589,
0.71415710724654164417893830589, 0.845846226692255186696990808460, 1.63769594147637879625314852097, 2.04160761143890824091897645982, 2.59306511475149919301252106104, 2.95127468007799322289695926065, 3.52598226732704934823301771248, 3.78412841667839640162890934921, 4.09571230635584524874588463518, 4.57161425307637155050470365437, 5.35208339480885541967817547688, 5.39570881412551241397881051398, 6.19236398308072811211386099558, 6.46907250804500963390678707509, 6.87393977302736831524588310125, 7.24327488072229659884759586446, 7.47587109513816898410067721729, 7.71107271752179426886195045573, 8.188088343202154938095708951230, 8.381599311768929476024755869488