Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 66 x^{2} + 328 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.458701753621$, $\pm0.771913839687$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.182528.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2084$ | $2942608$ | $4744119716$ | $7985814376448$ | $13418897712447844$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $50$ | $1750$ | $68834$ | $2826078$ | $115823730$ | $4750257718$ | $194755233506$ | $7984917542334$ | $327381936798386$ | $13422659225495190$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=20 x^6+10 x^5+31 x^4+27 x^3+4 x^2+36 x+7$
- $y^2=14 x^6+36 x^5+2 x^4+24 x^3+38 x+22$
- $y^2=25 x^6+5 x^5+31 x^4+32 x^3+39 x^2+12 x+31$
- $y^2=10 x^6+4 x^5+19 x^4+21 x^3+12 x+28$
- $y^2=7 x^6+23 x^5+40 x^4+5 x^3+5 x^2+16 x+40$
- $y^2=20 x^6+13 x^5+x^4+6 x^3+23 x^2+25 x+23$
- $y^2=12 x^6+28 x^5+39 x^4+24 x^3+20 x^2+25 x+40$
- $y^2=39 x^6+32 x^5+30 x^4+5 x^3+8 x^2+7 x+26$
- $y^2=25 x^6+19 x^5+15 x^4+29 x^3+22 x^2+3 x+37$
- $y^2=10 x^6+8 x^5+12 x^4+36 x^3+28 x^2+19 x+36$
- $y^2=32 x^6+27 x^5+40 x^4+29 x^3+x^2+2 x+29$
- $y^2=14 x^6+17 x^5+35 x^4+9 x^3+22 x^2+15 x+2$
- $y^2=20 x^6+4 x^5+29 x^4+5 x^3+12 x^2+14 x$
- $y^2=36 x^6+24 x^5+39 x^4+18 x^3+4 x^2+40 x+37$
- $y^2=33 x^6+23 x^5+7 x^4+36 x^3+2 x^2+18 x+15$
- $y^2=36 x^6+3 x^5+16 x^4+28 x^3+3 x^2+32 x+32$
- $y^2=7 x^6+12 x^5+20 x^4+28 x^3+29 x^2+31 x+33$
- $y^2=29 x^6+29 x^5+7 x^4+20 x^3+20 x^2+24 x+9$
- $y^2=37 x^6+11 x^5+39 x^4+15 x^3+27 x^2+19 x$
- $y^2=34 x^6+14 x^5+27 x^4+7 x^3+17 x^2+35 x+38$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.182528.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ai_co | $2$ | (not in LMFDB) |