Properties

Label 2.11.ae_s
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 18 x^{2} - 44 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.240490560995$, $\pm0.539857825313$
Angle rank:  $2$ (numerical)
Number field:  4.0.14336.1
Galois group:  $D_{4}$
Jacobians:  $14$
Isomorphism classes:  18

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $92$ $17296$ $1799612$ $214747136$ $26117784412$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $142$ $1352$ $14670$ $162168$ $1773982$ $19475576$ $214314654$ $2357950952$ $25937430702$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{11}$.

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is 4.0.14336.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.11.e_s$2$2.121.u_ig