Properties

Label 2.73.aq_hu
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 - 16 x + 202 x^{2} - 1168 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.281541231996$, $\pm0.402130878290$
Angle rank:  $2$ (numerical)
Number field:  4.0.185408.1
Galois group:  $D_{4}$
Jacobians:  $120$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4348$ $29201168$ $152151481468$ $806638113833984$ $4297491131580339388$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $58$ $5478$ $391114$ $28404510$ $2073006618$ $151333579974$ $11047397454634$ $806460096124350$ $58871586582333946$ $4297625829035024038$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is 4.0.185408.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.q_hu$2$(not in LMFDB)