Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 202 x^{2} - 1168 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.281541231996$, $\pm0.402130878290$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.185408.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4348$ | $29201168$ | $152151481468$ | $806638113833984$ | $4297491131580339388$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $58$ | $5478$ | $391114$ | $28404510$ | $2073006618$ | $151333579974$ | $11047397454634$ | $806460096124350$ | $58871586582333946$ | $4297625829035024038$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=34 x^6+44 x^5+44 x^4+16 x^3+27 x^2+71 x+71$
- $y^2=66 x^6+17 x^5+34 x^4+57 x^3+4 x^2+9 x+68$
- $y^2=58 x^6+30 x^5+8 x^4+33 x^3+36 x^2+66 x+72$
- $y^2=29 x^6+61 x^5+29 x^4+72 x^3+30 x^2+60 x+49$
- $y^2=39 x^6+44 x^5+5 x^4+x^3+2 x^2+33$
- $y^2=21 x^6+36 x^5+33 x^4+72 x^3+23 x^2+24 x+42$
- $y^2=41 x^6+24 x^5+53 x^4+22 x^3+57 x^2+59 x+34$
- $y^2=50 x^6+24 x^5+64 x^4+29 x^3+38 x^2+52 x+51$
- $y^2=22 x^6+51 x^5+28 x^4+31 x^3+7 x^2+57 x+63$
- $y^2=38 x^6+47 x^5+39 x^4+15 x^3+3 x^2+27 x+35$
- $y^2=60 x^6+28 x^5+40 x^4+38 x^3+8 x^2+41 x+36$
- $y^2=33 x^6+22 x^5+19 x^4+27 x^3+30 x^2+52 x+52$
- $y^2=56 x^6+9 x^5+37 x^4+64 x^3+49 x^2+69 x+68$
- $y^2=2 x^6+25 x^5+8 x^4+71 x^3+71 x^2+10 x+20$
- $y^2=41 x^6+72 x^5+72 x^4+20 x^3+51 x^2+36 x+16$
- $y^2=37 x^6+34 x^5+49 x^4+58 x^3+67 x^2+63 x+26$
- $y^2=25 x^6+61 x^4+19 x^3+15 x^2+26 x+21$
- $y^2=9 x^6+16 x^5+70 x^4+3 x^3+8 x^2+11 x+54$
- $y^2=30 x^6+65 x^5+65 x^4+63 x^3+45 x^2+13 x+47$
- $y^2=15 x^6+36 x^5+9 x^4+51 x^3+52 x^2+2 x+30$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.185408.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.q_hu | $2$ | (not in LMFDB) |