Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 103 x^{2} + 134 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.408184826875$, $\pm0.633296905302$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3526208.1 |
Galois group: | $D_{4}$ |
Jacobians: | $112$ |
Isomorphism classes: | 112 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4729$ | $21077153$ | $90395553808$ | $406013266129529$ | $1822825357158864649$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $70$ | $4692$ | $300556$ | $20148420$ | $1350115890$ | $90457800006$ | $6060715014886$ | $406067744064900$ | $27206534031483124$ | $1822837800587487412$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=3 x^6+6 x^5+39 x^4+44 x^3+20 x^2+57 x+58$
- $y^2=63 x^6+27 x^5+11 x^4+38 x^3+31 x^2+43$
- $y^2=45 x^6+42 x^5+29 x^4+47 x^3+45 x^2+62 x+12$
- $y^2=39 x^6+42 x^5+15 x^4+49 x^3+10 x+27$
- $y^2=33 x^6+35 x^5+60 x^4+24 x^3+63 x^2+43 x+47$
- $y^2=12 x^6+54 x^5+22 x^4+6 x^3+24 x^2+14 x+49$
- $y^2=53 x^6+6 x^5+54 x^4+64 x^3+58 x^2+4 x+49$
- $y^2=15 x^6+64 x^5+42 x^4+x^3+35 x^2+47 x+6$
- $y^2=65 x^6+46 x^5+2 x^4+34 x^3+40 x^2+25 x+36$
- $y^2=57 x^6+16 x^5+17 x^4+54 x^3+21 x^2+35 x+29$
- $y^2=49 x^6+27 x^5+62 x^4+42 x^3+61 x^2+16 x+26$
- $y^2=46 x^6+11 x^5+8 x^4+52 x^3+22 x^2+5 x+36$
- $y^2=21 x^6+4 x^5+39 x^4+12 x^3+14 x^2+12 x+63$
- $y^2=15 x^6+32 x^5+33 x^4+7 x^3+12 x^2+4 x+54$
- $y^2=14 x^6+59 x^5+44 x^4+55 x^3+30 x^2+14 x+29$
- $y^2=48 x^6+50 x^5+3 x^4+10 x^3+11 x^2+32 x+61$
- $y^2=56 x^6+6 x^5+59 x^4+59 x^3+3 x^2+54 x+56$
- $y^2=45 x^6+38 x^5+7 x^4+64 x^3+62 x^2+32 x+13$
- $y^2=35 x^6+66 x^5+40 x^4+24 x^3+46 x^2+9 x+21$
- $y^2=65 x^6+18 x^5+23 x^4+12 x^3+22 x^2+51 x+2$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.3526208.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ac_dz | $2$ | (not in LMFDB) |