L(s) = 1 | + 2·9-s − 8·19-s − 12·29-s + 8·31-s − 12·41-s + 24·59-s − 4·61-s − 24·71-s − 16·79-s − 5·81-s − 12·89-s − 12·101-s − 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s − 16·171-s + 173-s + 179-s + ⋯ |
L(s) = 1 | + 2/3·9-s − 1.83·19-s − 2.22·29-s + 1.43·31-s − 1.87·41-s + 3.12·59-s − 0.512·61-s − 2.84·71-s − 1.80·79-s − 5/9·81-s − 1.27·89-s − 1.19·101-s − 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s − 1.22·171-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24010000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24010000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9116679934\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9116679934\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.305789927634818909714806067556, −8.281609211132587024318060712146, −7.69420788136007504289919218404, −7.33744538383109732752886903906, −6.83390133838138318916790467467, −6.82194443513871435098891095537, −6.39468826572413961008538046613, −5.78948010250637930018609365591, −5.56949570209990711739251984988, −5.27392706656227558858189828497, −4.55029480576120775637440641325, −4.36425479567373422894996999906, −4.01524914012158550274887969545, −3.68732340971917116843635770573, −2.93992618903816531623346940943, −2.76737731920570098049231575658, −1.94109038548430212508388942562, −1.80719762122211448153754426983, −1.19144359295722920959211629250, −0.25942250569838280114146347842,
0.25942250569838280114146347842, 1.19144359295722920959211629250, 1.80719762122211448153754426983, 1.94109038548430212508388942562, 2.76737731920570098049231575658, 2.93992618903816531623346940943, 3.68732340971917116843635770573, 4.01524914012158550274887969545, 4.36425479567373422894996999906, 4.55029480576120775637440641325, 5.27392706656227558858189828497, 5.56949570209990711739251984988, 5.78948010250637930018609365591, 6.39468826572413961008538046613, 6.82194443513871435098891095537, 6.83390133838138318916790467467, 7.33744538383109732752886903906, 7.69420788136007504289919218404, 8.281609211132587024318060712146, 8.305789927634818909714806067556