L(s) = 1 | + 2-s + 3·5-s − 2·7-s − 8-s + 3·10-s + 4·13-s − 2·14-s − 16-s + 12·17-s − 14·19-s + 9·23-s + 5·25-s + 4·26-s + 9·29-s − 2·31-s + 12·34-s − 6·35-s − 8·37-s − 14·38-s − 3·40-s − 6·41-s + 4·43-s + 9·46-s + 3·47-s + 7·49-s + 5·50-s + 6·53-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.34·5-s − 0.755·7-s − 0.353·8-s + 0.948·10-s + 1.10·13-s − 0.534·14-s − 1/4·16-s + 2.91·17-s − 3.21·19-s + 1.87·23-s + 25-s + 0.784·26-s + 1.67·29-s − 0.359·31-s + 2.05·34-s − 1.01·35-s − 1.31·37-s − 2.27·38-s − 0.474·40-s − 0.937·41-s + 0.609·43-s + 1.32·46-s + 0.437·47-s + 49-s + 0.707·50-s + 0.824·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 236196 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 236196 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.083067731\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.083067731\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03457261891200222356840903600, −10.64557171912236157911321979084, −10.20026464587774252493112762676, −10.10754235561458609037512342213, −9.530771136615603992571230523222, −8.766045867232726927570207969390, −8.563981486422708538670718926232, −8.438662557282255484760827983418, −7.14210723258201388684837341199, −7.12040862029975227921916369845, −6.21896888550664762617002940327, −6.17423520285278835618122467941, −5.52511068690168711259613773189, −5.28175130366550267513058917458, −4.40894079072760182883170848310, −3.96350899921876026263251702378, −3.09445757754292285123753254422, −2.93010306679192687358797931440, −1.89102821128581011153876899378, −1.05188513745075441533185082570,
1.05188513745075441533185082570, 1.89102821128581011153876899378, 2.93010306679192687358797931440, 3.09445757754292285123753254422, 3.96350899921876026263251702378, 4.40894079072760182883170848310, 5.28175130366550267513058917458, 5.52511068690168711259613773189, 6.17423520285278835618122467941, 6.21896888550664762617002940327, 7.12040862029975227921916369845, 7.14210723258201388684837341199, 8.438662557282255484760827983418, 8.563981486422708538670718926232, 8.766045867232726927570207969390, 9.530771136615603992571230523222, 10.10754235561458609037512342213, 10.20026464587774252493112762676, 10.64557171912236157911321979084, 11.03457261891200222356840903600