| L(s) = 1 | − 2·2-s − 4-s − 2·5-s − 4·7-s + 8·8-s − 4·9-s + 4·10-s + 8·14-s − 7·16-s + 8·18-s − 8·19-s + 2·20-s + 3·25-s + 4·28-s − 14·32-s + 8·35-s + 4·36-s + 16·38-s − 16·40-s + 20·41-s + 8·45-s − 2·49-s − 6·50-s − 32·56-s + 16·59-s + 16·63-s + 35·64-s + ⋯ |
| L(s) = 1 | − 1.41·2-s − 1/2·4-s − 0.894·5-s − 1.51·7-s + 2.82·8-s − 4/3·9-s + 1.26·10-s + 2.13·14-s − 7/4·16-s + 1.88·18-s − 1.83·19-s + 0.447·20-s + 3/5·25-s + 0.755·28-s − 2.47·32-s + 1.35·35-s + 2/3·36-s + 2.59·38-s − 2.52·40-s + 3.12·41-s + 1.19·45-s − 2/7·49-s − 0.848·50-s − 4.27·56-s + 2.08·59-s + 2.01·63-s + 35/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23088025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23088025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.1040015871\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1040015871\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.509702196785107422645825564399, −8.401930384415265433384194663249, −7.68073952698784522091600676042, −7.67971646231990049055635960607, −7.28162700929389523460152344321, −6.71686470700385356708667140741, −6.24724845939990654032938259012, −6.20578143624530865174296757944, −5.43905562119782544669449151032, −5.28767645266726421929097867133, −4.58945096079295981989720501552, −4.34213532244743429247085747350, −3.83850129746067797882034427780, −3.74825718470574142532206638617, −3.06938626372023333778866747615, −2.56999900596291065924702035050, −2.19384884798111953443839211330, −1.29265327702840687191771619909, −0.65501376125130863335748731147, −0.20216187348208983450575852366,
0.20216187348208983450575852366, 0.65501376125130863335748731147, 1.29265327702840687191771619909, 2.19384884798111953443839211330, 2.56999900596291065924702035050, 3.06938626372023333778866747615, 3.74825718470574142532206638617, 3.83850129746067797882034427780, 4.34213532244743429247085747350, 4.58945096079295981989720501552, 5.28767645266726421929097867133, 5.43905562119782544669449151032, 6.20578143624530865174296757944, 6.24724845939990654032938259012, 6.71686470700385356708667140741, 7.28162700929389523460152344321, 7.67971646231990049055635960607, 7.68073952698784522091600676042, 8.401930384415265433384194663249, 8.509702196785107422645825564399