Properties

Label 4805.2.a.h
Level $4805$
Weight $2$
Character orbit 4805.a
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4805,2,Mod(1,4805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} - q^{4} - q^{5} - \beta q^{6} - 2 q^{7} + 3 q^{8} - q^{9} + q^{10} - 2 \beta q^{11} - \beta q^{12} - 4 \beta q^{13} + 2 q^{14} - \beta q^{15} - q^{16} - 4 \beta q^{17} + q^{18} + \cdots + 2 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{7} + 6 q^{8} - 2 q^{9} + 2 q^{10} + 4 q^{14} - 2 q^{16} + 2 q^{18} - 8 q^{19} + 2 q^{20} + 2 q^{25} + 4 q^{28} - 10 q^{32} - 8 q^{33} + 4 q^{35} + 2 q^{36} + 8 q^{38}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.00000 −1.41421 −1.00000 −1.00000 1.41421 −2.00000 3.00000 −1.00000 1.00000
1.2 −1.00000 1.41421 −1.00000 −1.00000 −1.41421 −2.00000 3.00000 −1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4805.2.a.h 2
31.b odd 2 1 inner 4805.2.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4805.2.a.h 2 1.a even 1 1 trivial
4805.2.a.h 2 31.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4805))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 8 \) Copy content Toggle raw display
$13$ \( T^{2} - 32 \) Copy content Toggle raw display
$17$ \( T^{2} - 32 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 50 \) Copy content Toggle raw display
$29$ \( T^{2} - 50 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 72 \) Copy content Toggle raw display
$41$ \( (T - 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 18 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 72 \) Copy content Toggle raw display
$59$ \( (T - 8)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 50 \) Copy content Toggle raw display
$67$ \( (T - 2)^{2} \) Copy content Toggle raw display
$71$ \( (T + 4)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 72 \) Copy content Toggle raw display
$79$ \( T^{2} - 128 \) Copy content Toggle raw display
$83$ \( T^{2} - 50 \) Copy content Toggle raw display
$89$ \( T^{2} - 98 \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less