Properties

Label 2-4725-1.1-c1-0-65
Degree $2$
Conductor $4725$
Sign $1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 7-s + 3·13-s + 2·14-s − 4·16-s − 2·17-s + 4·19-s + 4·23-s + 6·26-s + 2·28-s + 2·29-s + 31-s − 8·32-s − 4·34-s + 7·37-s + 8·38-s + 6·41-s + 7·43-s + 8·46-s − 8·47-s + 49-s + 6·52-s − 4·53-s + 4·58-s − 4·59-s − 2·61-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.377·7-s + 0.832·13-s + 0.534·14-s − 16-s − 0.485·17-s + 0.917·19-s + 0.834·23-s + 1.17·26-s + 0.377·28-s + 0.371·29-s + 0.179·31-s − 1.41·32-s − 0.685·34-s + 1.15·37-s + 1.29·38-s + 0.937·41-s + 1.06·43-s + 1.17·46-s − 1.16·47-s + 1/7·49-s + 0.832·52-s − 0.549·53-s + 0.525·58-s − 0.520·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.578908461\)
\(L(\frac12)\) \(\approx\) \(4.578908461\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.155623586579538706757570672036, −7.43176687731826870361366039115, −6.50214677704479677044463853057, −6.05230827210832654104884385745, −5.16883676639962667180243946464, −4.65444786211788835134520228819, −3.84661147971485487844529928407, −3.12038194314791806442671455008, −2.28238812168272882685413248311, −0.995779494632046062759647561951, 0.995779494632046062759647561951, 2.28238812168272882685413248311, 3.12038194314791806442671455008, 3.84661147971485487844529928407, 4.65444786211788835134520228819, 5.16883676639962667180243946464, 6.05230827210832654104884385745, 6.50214677704479677044463853057, 7.43176687731826870361366039115, 8.155623586579538706757570672036

Graph of the $Z$-function along the critical line